IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Conformal invariance and correction to finite-size scaling: applications to the three-state Potts

model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 2577
(http://iopscience.iop.org/0305-4470/20/9/041)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:33

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 20 (1987) 2577-2591. Printed in the UK

Conformal invariance and corrections to finite-size scaling:
applications to the three-state Potts model

G von Gehlen, V Rittenberg and T Vescan
Physikalisches Institut, Universitdt Bonn, Nussallee 12, D-5300 Bonn 1, West Germany

Received 14 July 1986

Abstract. Corrections to finite-size scaling are determined numerically for several levels
of the three-state Potts quantum chain with various boundary conditions. It is found that
the leading correction term behaves like N %%, In the case of periodic and twisted boundary
conditions the coefficients of the N %% term are determined by the three-point correlation
functions of the conformal theory.

1. Introduction

In two previous letters (von Gehlen and Rittenberg 1986a, b) we have given the operator
content of the finite-size scaling limit of the spectrum of the three-state Potts quantum
chain at the critical point. Various boundary conditions have been considered and in
each case we have identified the irreducible representations (ir) of the Virasoro algebra
which build up the spectra. In this paper we will consider in detail the problem of
the finite N correction terms (Privman and Fisher 1983, 1984, Luck 1985, Cardy
1986a, b, Henkel 1987, Reinicke 1986). We first summarise our previous results.
We consider the Hamiltonian of the Potts quantum chain

H=- 3‘/3 Z [0+0: +A(T; F1+1+Firi+l)] (1.1)

where

2

1 0 0 0 0 1
o=10 w O r=(1 0 0 w=elm3, (1.2)
0 0 w 010

Here A has the meaning of the inverse of the temperature and N represents the
number of sites. The Hamiltonian is self-dual and has a critical point at A =1. The
normalisation factor 2/3v3 which fixes the Euclidean timescale is taken from von
Gehlen et al (1986). We specify the boundary conditions. If we take

F'yai=w P] (1.3)

we denote the corresponding Hamiltonians by H'Q. For free boundary conditions
we have

Iyt =0 (1.4)

and the corresponding Hamiltonian is H'"’. Since the Hamiltonian (1.1) is Z; sym-
metric, each of the matrices H'® and H'"" has a block-diagonal form: H'®’ contains
the matrices H2’ and H'" the matrices HJ (Q=0,1and 2). At A =1 self-duality
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2578 G von Gehlen, V Rittenberg and T Vescan

and the invariance under charge conjugation of the Hamiltonian (1.1) give the following
relations among the spectra of the matrices H2' and H:

H(O) H(Q) H(O) H(O) H(]F)zH(zF) (15)

and we are thus left with five independent spectra: HY, H\”, H{", H{" and H{P.

In the case of periodic (H{” and H'”) and twisted (H{") boundary conditions we
can further prediagonalise the matrices using the translational invariance of the Hamil-
tonian. We denote by

ESQ(P; 5) P=0,1,2...;5=0,1,2... (1.6)
the eigenvalues of the matrices H5?’ corresponding to the momentum P. Here s =0
corresponds to the lowest elgenvalue s =1 to the next higher one, etc. E{’(0; 0)= E{’
corresponds to the ground-state energy of the Hamiltonian with periodic boundary
condmons The eigenvalues of H ' are denoted by ES'(s), s=0,1,2,.... E{F(0)=

7’ denotes the ground-state energy of the Hamiltonian with free boundary conditions.

We now consider the following quantities which are relevant for finite-size scaling
(Cardy 1986a):

. N -
€L (Pys) = LlEOZ(Eg(P; s)—E)

N
igg>(s)=Lig;-(sgxs)—)sg”). (1.7)

It is a consequence of conformal invariance that the spectra given by equations
(1.7) can be described by 1r of the Virasoro algebra with a central charge depending
on the universality class of the system. For the three-state Potts model the central
charge is ¢ = ¢ (Friedan et al 1984, Dotsenko 1984). We denote by A the highest weight,
and by A+r the level of r having a degeneracy d(A, r) of one ir of the Virasoro
algebra. The spectra €5°'(P; s) are given by the products of two IR (A and A) of two
commuting Virasoro algebras with the same central charge. The contribution of one
IR (A, A) to the spectrum 3‘0)(P s) is

E(A+rA+F) =A+r+A+F
P=(A+r)—-(A+7)-10Q ri=0,1,2,.... (1.8)
The degeneracy of the level %’50.’(A+ r,A+7)is d(4, r)d(A, F).

The spectra € (s) are described by the IR of only one Virasoro algebra, namely
an 1R () gives a contribution

€S =A+r r=0,1,2,... (1.9)

with a degeneracy d(A,r). (The degeneracies d(A,r) can be computed using the
character formulae of Rocha-Caridi (1985).)

It was established by numerical studies (von Gehlen and Rittenberg 1986a, b) and
confirmed by analytical calculations (Cardy 1986b, c, Itzykson and Zuber 1986, Zuber

1986) that the spectra €42’ and € can be described by the following sums of IR of
the Virasoro algebra:

€70,000(3,99G )G DOEHDGB,08(0,3)D(3,3)
8(0)—(15, 15)@(3,1
€"=G%00,)9(35®03,)

: (1.10a)
15
€'=(5990G,00G,0)0G,3)
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and
& =0@(3)

, (1.10b)
€ =0

With this background in mind we can now formulate the problem we want to clarify
in this paper. Through the identification provided by equations (1.8) and (1.9), we
can label the levels for finite chains instead of ESC'(P; s) by E(A+r, A+F; i) in the
case of periodic and twisted boundary conditions and analogously for free boundary
conditions by E(A+r; i) instead of EQ’(s). Here i=1,2,...,d(A, r)d(A, F) for the
periodic and twisted boundary conditionsand i =1, 2, ..., d(A, r) for the free boundary
conditions case. By convention, if the level is not degenerate, we will drop the index
i. Now we consider the quantities

F(A+r,A+F i)=(N/27)E(A+r, A+F; i) - E)
FA+r i)=(N/m)EA+r;i)—E{

which depend on N as do the E(A+r,A+F; i), E, etc.

Obviously, the €5°(P; s), €37(s) of equation (1.7) are the limits N~ of the
corresponding %. We shall study how for large but finite N the F(A+r, A+F; i)
approach A+r+A+7 Assuming power corrections we write

{1.11)

FA+rA+F i)=A+r+A+i+te N S +e, N 4, (1.12)

where a,> . The exponents a, and a;, and the coefficients ¢, and ¢, will in general
depend on the irreducible representation (4, A), of the level (r, 7) and of the index i.
It was Cardy (1986a, b) who pointed out that conformal invariance can give us much
information on the a; and ¢ (j=1,2,...). We can do a similar study for the ¥
corresponding to the free boundary conditions case:

F(A+r,iy=A+r+ ¢ N U+, N %24+, (1.13)

There is, for the time being, no theory which can explain the finite-size corrections
in the case of free boundary conditions.

The paper is organised as follows. In § 2 we present the raw numerical data for
the ¥ corresponding to several levels. We then show the results of the fits which give
the corresponding ¢ and « appearing in equations (1.12) and (1.13). In § 3 we show,
following Cardy (1986a, b), that the a are related to the scaling dimensions of some
conformal operators and that the ¢ are related to expansion coefficients (Belavin et al
1984).

In § 4 we compare the numerical results of § 2 with the theoretical predictions of
§ 3. Our results are summarised in § 5. In the appendix we derive some expansion
coefficients from the four-point functions of Dotsenko (1984). These expansion
coefficients are used in the calculation of the corrections to finite-size scaling.

2. Numerical studies of the corrections to finite-size scaling

In order to familiarise the reader with the numerical problems involved in our study,
in tables 1 and 2 we give the values of F(A+r,A+7;i) and F(A+r; i) defined in
equation (1.11) for several levels. Chains from 2 up to 14 sites have been considered
for periodic and twisted boundary conditions and from 2 up to 12 sites for free boundary
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conditions. The large N limit for the % computed using Van den Broeck-Schwartz
(1979) approximants is shown at the bottom of the tables. Comparing the values of
the estimates with the expected values (see equations (1.12) and (1.13)) one gets a
feeling of the errors involved. We would like to make a remark on the application of
the Van den Broeck-Schwartz approximants to our problem. The approximants are
defined as follows. Assume we have a set of numbers A,, A,,..., Ay converging to
a limit A. We denote by [n, L], L=0,1,..., new sets defined through the equations

[n,—1]=00
[n,0]= A,
([n, L+1]—[n, LD
=—B(n,L-1]=[n, LD
+([n+1,L]=[n, L) "+([n—1, L]-[n, L] (2.1

where B is a parameter. It was pointed out by Hamer and Barber (1981) that if the
corrections terms to A are power behaved, the approximants are stable for g =-1.
This stability for 8 = —1 was observed not only for the approximants shown in tables
1 and 2, but also for the other calculations which are described in this section.

We now consider the correction terms to the ¥ (see equations (1.12) and (1.13)).
We start with the F(A+r, A+7;i). We first determine <™. In order to do so, we
consider the estimates

(a)n={In[(N+1)/N}}™" ln( FA+nA+F )n—(A+r+A+F) )

— — 2.2
FA+r,A+F, i)ye—(A+r+A+F) (2.2)
where N represents the number of sites. From the estimates (a;)n5 one obtains as®
using Van den Broeck-Schwartz approximants. The results are shown in table 3. In

order to exemplify how the approximants work, in table 4 we give the approximants

Table 3. Estimates for ¢, ¢;, @, and a, defined by equation (1.12) (periodic and twisted
boundary conditions) for several levels. The values of a, and «a, assumed in the determina-
tion of ¢, and c, are also specified.

(A+rA+7) af" ¢ a‘;” [
(0+2,0) 2.01(2) -5.810 (1) — —
(a,=2.0)
(15, &) 0.796 (10) 0.006 57 (2) 1.98 (5) 0.03238(2)
(a, =0.8) (ay=2.1)
(E+1,%) 1.71(5) 0.034(2) -1.6 (1)
(a,=0.8) (ay=2)
(2,2 0.7998 (3) 0.2364 (2) 1.80 (2) -0.328 (2)
(a,;=0.8) (a;=2)
&) 0.82 (3) —0.0395 (3) 1.80 (6) -0.15(3)
(a, =0.8) (a;=2)
G, &+1) 1.79 >-0.2
(a,=0.8)
-3.417 (4)
(a;=1.8)
)] 1.691(2) -0.708 (1)

(a, =1.6)
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Table 4. Van den Broeck-Schwartz approximants with 8 = —1 for «$' corresponding to

the level (£,%).

0 1 2 3 4 5

3

0.210 732 0594

0.431 188 8305  0.628 096 9357

0.535197 8824  0.676 3658152  0.796 517 6465

0.595084 1840 0.7039133105 0.7980301924  0.799 491 6997

0.633713 5729  0.721 6612838 0.798 767 5181  0.799 733 5156  0.799 991 6545
0.660 553 8650 0.7340118063 0.799 1833625 0.799 8437650  0.800 048 0630  0.800 024 2323
0.680211 5652 0.7430807920 0.7994375114 0.799908 2095  0.799 996 0275
0.695186 8521 0.750010 1406  0.799 602 0556  0.799 942 5950

0.706 949 1907  0.755469 4091 0.799 712 7415

0.716 416 4606  0.759 876 5940

0.724 190 2939

— O N 00~ B W

—

for a{" in the case of %(} %). We notice from table 3 that the values of at" cluster

into two groups. For the levels (%, 1), 3, %), (1) one finds a$"=0.8 and for the
others one finds " =~1.8-2.0. Since large values of a$" can also be obtained from
a,=0.8 and @, =2 with ¢, and ¢, having opposite signs (see equation (1.12)), we have
assumed o, = 0.8 for all the levels and have determined ¢,. It turns out that for the
level (f5+1,1s) we find very stable approximants and less stable approximants for
(3,7s+1). The ansatz a,=0.8 does not work for the levels (0+2,0) and (,2). The
values of the ¢, are shown in table 3. Next we determine a$". We did it only for the
levels where a, = 0.8. The corresponding values of 5" are also shown in table 3. They
are around 1.8-2.0. Next we have assumed a,=2.0 and have determined the ¢,. In
§ 4 we will discuss the interpretation of the results shown in table 3.

We now turn to the problem of the corrections to finite-size scaling in the case of
free boundary conditions. We have determined aS" first (see equation (1.13)). The
estimates for a$" computed using the equivalent of equation (2.2) are shown in table
5. At the bottom of the table are the Van den Broeck-Schwartz approximants for <™.
To our surprise they all cluster around a, =0.8. We have done a fit to the ¥ taking
a,=0.8 and assuming a, =2:

FA+r, i)=A+r+c, N ¥+, N2 (2.3)

The values for ¢; and ¢, are shown in table 6. There is not yet a theory which can
explain the value for «, or the values of the ¢, in the case of free boundary conditions
but we shall return to this problem in another publication.

3. Breaking of conformal invariance

In this section we essentially follow Cardy (1986a, b). We consider first some relations
which can be obtained using conformal invariance for the two- and three-point
correlation functions.

In a conformal invariant theory in two dimensions, each primary field ¢(X, Y) is
related to the highest weights (4, A) of the tensor product of two irreducible representa-
tions of two commuting Virasoro algebras. The two-point correlation function is
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Table 6. Estimates for ¢, and c, defined by equation (2.3) (free boundary conditions) for
several levels.

Level

(A+r i) ¢y ¢,

(2) -0.73(2) -1.3(1)

(3) —1.943 (5) -1.2(1)

@ —0.393 (4) —0.13 (4)

(2+1) ~0.81(2) -0.9(1)

3G+2;1) —1.49 (4) -1.5(1)

(3+3;1) -1.7(3) -13(3)

3+3;2) -2.0(2) -6 (3)
completely determined:

<‘PA,5(ZI s fl)‘PA,E(Zz, L= (z,—2,) ~ZA(Z-l - 2-2)—25 (3.1)
where

z=X+iY i=X-iY.

The quantities x=A+A and s=A—A are called the scaling dimensions and the spin
of the field ¢, 5. Note that the right-hand side of equation (3.1) fixes the normalisation
of the field ¢, 5. The three-point function of primary fields is also fixed by conformal
invariance:

<‘PA,,5,(21 , 51)¢A2,52(Zza 2—2)¢A3,53(23a z))
= Ca,.000,08, 30.5,(21 = 22) 5T T0(E = 1) BT Ru (g, - 2)

X (2, - 23)3 788 (2 — 7)) 80T (5~ 7,) A TA

(3.2)

The ¢4, 4, .4, are called expansion coefficients and they are also fixed by the conformal
theory (Belavin et al 1984).

Under a conformal transformation w = w(z) the correlation function of primary
fields transforms as follows (w, = w(z,), etc):

(@a,a Wi, W) ..y =(W(2)) ™ (w'(2) ey, 5,21, 2) .. ) (3.3)
We now consider the conformal transformation
w=(N/27)Ilnz=7+iv (3.4)

which maps the plane into the strip (-3N < v<iN, —c0< r< ). As the result of the
transformation (3.4), the two-point function has the following expression on the strip:

<¢A,E(Ul s Tl)‘PAJs(Uz, Tz))
=(Q2m/N)FeE(1- )21 -8

o

=Q27/N)* ¥ a,(28)a:23)
r, 0

F=

xexp[—(27w/N)(x+r+F)r—2mi/N)(s+r—F)v] (3.5)

where

£=2z\/2, TET, T V=00 (3.6)
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and
IMNa+r)
rl(a)’

a{a)= 3.7

For the three-point functions of two primary fields ¢, 5 and one spin-zero primary
field @4, 4, (this is the quantity of interest for our calculations) we have
(‘PA,E.(UI s Tl)GPA‘,A,(Uz, T2)@a5(03, T3))
=Caa4,C55a,(27/ N)ZXH‘(Elfz)zA(Evf_z)ZE('l - fl' |1 - le)_m‘
x(1= &5 (1= §E) (3.8)
where
& =exp(2m/ N)(w, - w,) & =exp(2m/ N)(wy— ws). (3.9)

We now write the two-point function (3.5) using the spectral decomposition and
equations (1.7) and (1.8):

(02.5(01, )@ aa(D2, 2)) = (0|0 5(v1, 7))@ aa(D2, 72)/0)
=(0|exp(~ Hr, —1Pv,)¢4,5(0, 0) exp(— Hr —iPv) ¢4 5(0, 0)
x exp(H12+i1302)|0)
=Y (01$25(0,0)|A+r, A+F; iXA+r, A+F; i|,,5(0,0)[0)

xexp[-(2m/ N} x+r+F)r—Q2#i/N)(s+r—F)v] (3.10)

where H is the Hamiltonian, P is the momentum operator and the summation over i
is over the various degeneracies. We now compare equations (3.5) and (3.10) and obtain

(0/¢4,5(0, 0)[4, XA, A|¢4 5(0,0)|0) = 27/ N)**
(01¢4,5(0, 0)|A+1, AXA+1, B]¢4 5(0, 0)[0) = 24(27/ N)™™. (3.11)

The three-point function in this limit can also be written using the spectral decomposi-
tion. One finds

(‘PA‘E(UI s Tl)‘PAl,A,(UZ, Tz)‘PA,S(U3, 7))
= CanaCaaa 27/ N)Z (4,64 (6 E)2
x[1+(A-A,+2A)¢,6,+...] (3.12)

The three-point function in this limit can also be written using the spectral decomposi-
tion. One finds

<0|¢A,Z(vl s Tl)ﬁaA.,Al(Uz, Tz)éA.Z(UA, 73)|0>
= (£,6)*(£:8)*(0|¢4.5(0, 0)|A, AXA, B¢, 4(0, 0)[0)
X (A, Al@a, 4,(0,0)[4, B+ £,£:0/¢45(0,0)[A+1, B)

X(A+1,Al¢4500,0)[00A+1,A|@4, 4,(0,0)]a+1,8)+...). (3.13)
We compare equations (3.12) and (3.13) and with the help of equations (3.11) obtain
(4, Z’@AhAl(O, 0)|A, Z) = (ZW/N)xlCA,A,A,CZ,E,A‘ (3.14a)

(A+1,4[84,4,(0,0)|A+1,8)= 27/ N)"[1+(A} - A,)/2A]cs 4,5 5.0, (3.14b)
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We now assume that the conformal invariant theory described by the Hamiltonian
H is perturbed by an additional term:

N/2

I—?=H+gJ @a, a,(0,0)do (3.15)

-N/2

where H is the new Hamiltonian and g is a coupling constant. We apply standard
perturbation theory and stop at the first order:

E® =(0|H|0)=(0|H|0)= E” (3.16a)
E(A+r,A+F i)=(A+r,A+F, ilH|A+r A+F; i)
=E(A+r,A+F, i)+ Ng(A+r,A+F;il¢s 4,(0,0A+r,A+F0). (3.16b)

Here E{” and E(A, A; i) are the eigenvalues of the unperturbed Hamiltonian. From
equations (3.164, b) and (1.11), we obtain

FA+r,A+F )=A+r+A+7

+(N?/2m)g{A+ 1, A+F; i|@a, 4,(0,0)|A+r, A+ 7 i) (3.17)

If we specialise to the levels considered in equations (3.14a, b), we obtain
F(A,8)=0+A+[g(2m)" "IN " Jcyna,Caaa, (3.18a)
FA+1,8)=A+1+A+[gm) " "N ™) [1+(A7~A,)/2A)csan,Caaa, - (3.18b)

From equations (3.18a, b) we learn that in the first order in [gN?""(27)* '] the
F can be obtained from the knowledge of the three-point function of the conformal
theory. Reinicke (1986) has shown that the higher-order corrections can be obtained
from the n-point correlation functions of the conformal theory (the four-point function
determines the quadratic correction, etc).

In equation (3.15) we made the hypothesis that the perturbation is given by the
primary operator ¢, 4 (v, 7). It is interesting to consider instead the operator ¢, (v, 7)
which corresponds to the descendents r = F=2 of the unit operator (A;=4,=0). In
this case one obtains instead of (3.18a)

F(B,8)=A+2+g2m)’ N7 [(A~25¢810)(A—25c850)— (20)’].  (3.19)

This result was obtained by Reinicke (1986). Notice that ¢,,(v, ) gives ‘analytic’
contributions to the # With the equations (3.18) and (3.19) at hand we can now try
to give an interpretation to the results obtained in § 2.

4. Comparison of the predictions of conformal invariance and the numerical fits
We have seen in § 2 that the correction terms to the # given by equation (1.12) can
be described by fits of the form

FA+rA+7)=A+A+r+7+ AN+ A, N2+, . (4.1)

where the values of the coefficients A, and A, for various levels can be obtained from
table 3. We first consider the N™°% correction term in equation (4.1). From equations
(3.18) we learn that

A, =3x,=1 (4.2)
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and that the leading correction to finite-size scaling is indeed given by the next to
leading thermal exponent (Privman and Fisher 1983). In order to derive the coefficients
A, in equation (4.1), we use equations (3.18) to which one has to add the numerical
values of the expansion coefficients c, 4 7/5. From Belavin et al (1984) we learn which
expansion coefficients c,, 4, 4, are different from zero; they are shown in table 7. From
this table we obtain

€0.0.7/5= C2/3,2/3.2/5 =0 (4.3)

and thus the A, for the levels (0+2,0) and (3, ) have to vanish in agreement with
table 3. In order to obtain the remaining non-vanishing coefficients we use the
four-point function of Dotsenko (1984) and obtain (see the appendix)

6(T)\"*(T)) "
(02/5.2/5,7/5)22';(?(';')') F(% (4.4)
and
(02/5,2/5,7/5)2=36(01/15,1/15,7/5)2- (4.5a)

As suggested by the results of table 3, we take the following solution of equation (4.5a):

Ca/5,2/5.7/5= —6C1/15.1/157/5: (4.5b)

We can now use equation (4.5b) together with equations (3.18a, b) and obtain the
A, for all levels if we specify one of them (the coupling constant g is unknown), Since
the errors for the level (%, %) are the smallest, we have used the corresponding value
of A, in order to determine the others. The expected values for the A, (A*®) are
compared in table 8 with the values obtained from table 3. The agreement between

Table 7. Values of A, for which the expansion coefficients Ca,,8:,4; = Ca, a,.a, 3T€ NON-ZETO.

4,
A @ 3 @ 3 6 ()
o o 3 & 63 4 (i)
3 - O & & 3 B
@ - — wed @ (i) BeIe)
¢ - - = OM®d) () B
& - - - — o3 Heda(y
s - - = — — Ve33R d )

Table 8. Comparison between the values of A, computed using conformal invariance (AS')
and those determined numerically.

Level

(A+r,A+F) ASrP A,
(0+2,0) 0 0

(5. 15 0.006 566 0.006 57 (2)
(H+1,%) 0.034 14 0.034 (2)
&, -0.0394 -0.039 5 (3)
G &+ —-0.2049 >-02

4.9 0 0
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the two sets of A, is very good. We have thus shown that the leading correction to
the % can be understood using the calculations of § 2. We now proceed with the
second correction term (A, N 2). This term has to be considered with care. It is clear
that a correction term N~'° should be present (this is the second-order correction
coming from the same operator which gave us N %% in first order). We can assume
that numerically this term is negligible in the interval of N we are considering and
again try to determine the coefficients A, assuming that one of them is known. This
check can be done using equation (3.19). This analysis can be performed using the
values of A, which can be obtained from table 3. The result is negative. In order to
illustrate the point, let us consider the ratio of the A, corresponding to the levels (3, 3)
and (i, 15). We find

=— 4.6a)
At 3 (
from equation (3.19) and
A3 Y
——=—=-10.1 (4.6b)
A2(1_15a 1-15)

from table 3. Many explanations for this mismatch are possible. The most obvious
of them is that the A, N "2 terms in our fits are effective representations for combinations
of the form

N+ o N2+ .. (4.7)

In that case it is hopeless to establish numerically the separate contributions. We
would like also to mention that in the case of the Ising model the ‘analytic’ correction
(N7?) is not given by the operator ©12(v, T) used to derive equation (3.19) but by a
descendent of the energy density operator (Reinicke 1986). It is thus possible that in
the three-state Potts model there are no (N ~2) correction terms present at all.

5. Conclusions

We have analysed numerically the corrections to finite-size scaling for various levels
and different boundary conditions. Our results are summarised in tables 3 and 6. In
the case of periodic and twisted boundary conditions we show that the leading
correction term is given by N ™% terms. We find the coefficient of the N %% corrections
to be in excellent numerical agreement with the short-distance expansion coefficients
which appear in a first-order perturbation treatment of the breaking of conformal
invariance. The next to leading correction term is not yet under control.

In the case of free boundary conditions the leading correction term again behaves
like N~%%, The theoretical determination of the coefficients in this case will be published
elsewhere.
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Appendix. Determination of the expansion coefficients from the

four-point correlation functions

We consider the four-point functions for the energy density (@15 5,5) and spin (¢,,15.1/15)

operators in the plane (Dotsenko 1984):

(992/5,2/5(21 s 51)4’2/5,2/5(22, 52)602/5,2/5(23, 53)992/5,2/5(24, EAY

8/5
212234
—===—| |F(=§ -4, -5l

213232224214

2132322242 6/3
ey e L
12434
and

<<P1/15,1/15(21 ’ 2_1)401/15,1/15(22, 2-2)<P2/5,2/5(23, 2-3)<P2/5‘2/5(24, z)

=CM__'F(_9 L4
‘213232224214|4/5 555 7

1213232224214|2/5

+D|‘ZWIF(2§, L5 P
where
Zy =2~z N = 243224/ 212234
rre)’ -
A=S rra e

OO

_36 CAITETE)
® TR

C=1uB D=3A

TEAT@+IEHrE) ™

(Ala)

(Alb)

(A2)

and the F denote standard hypergeometric functions. The normalisation of A, B, C,

D is chosen to obtain the correct normalisation in equation (3.11).

We perform the conformal transformation (3.4) and use equation (3.3) in order to

obtain the correlation functions on the strip. Using

§=2/2z.= exp{(ZTr/N)[(Tj = 70) +ily — v )}

we find in the small ¢ limit:

<‘P2/5,2/5(Ul s Tx)‘Pz/s,z/s(Uz, Tz)‘Pz/s,z/s(Us, 7'3)(,02/5‘2/5(04, 74))

2 1673 4/5 4 4
- (ﬁ) &1l [1 +Hgl
é ? @)35@ 14/5 }
+(7> (r(%) G

(‘P:/ls,l/ls(vl » 71)‘P1/15,|/15(Uz» Tz)‘Pz/s,z/s(U:x, 73)992/5_2/5(”4, 7))

2 28/15 . 1
-(3)" el e e

IVTAOVTA) |, s ]
+<7) (]‘(%)) r(g)lgzl A

and

(A3)

(Ada)

(Adb)
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It is easy to show, applying the methods of § 3, that one has in general:

(‘PA..S,(Ul s Tl)‘PA..B.(Uz, Tz)‘PAz,KZ(Us, TJ)‘PAZ.ZZ(Uth Ta))

277 2x|+2x: i o
-(B)" e

A, FA
) Ca,.a,.8,€85,8,,8,C4, 4, ,5,C3, 5,5, £2¢ 2%, (AS)
k

From equations (A4a, b) and (AS) we obtain

6/T 3\\ 3/2 r 13\ 1/2
(Cz/s‘z/s,v/s)z'—';(%) (%) =36(01/15,1/1s,7/5)2- (A6)

The expansion coefficients given in equation (A6) are used in § 4. In a similar way
we obtain

2_ 1 2
(er1/1507152/5)" =73(Cay5.2/52/5)
(C1/15,2/5,2/3)2=%- (A7)

The expansion coefficients given in equation (A7) might be useful for other applications.
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