Conformal invariance and correction to finite-size scaling: applications to the three-state Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 202577
(http://iopscience.iop.org/0305-4470/20/9/041)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:33

Please note that terms and conditions apply.

Conformal invariance and corrections to finite-size scaling: applications to the three-state Potts model

G von Gehlen, V Rittenberg and T Vescan
Physikalisches Institut, Universität Bonn, Nussallee 12, D-5300 Bonn 1, West Germany

Received 14 July 1986

Abstract

Corrections to finite-size scaling are determined numerically for several levels of the three-state Potts quantum chain with various boundary conditions. It is found that the leading correction term behaves like $N^{-0.8}$. In the case of periodic and twisted boundary conditions the coefficients of the $N^{-0.8}$ term are determined by the three-point correlation functions of the conformal theory.

1. Introduction

In two previous letters (von Gehlen and Rittenberg 1986a, b) we have given the operator content of the finite-size scaling limit of the spectrum of the three-state Potts quantum chain at the critical point. Various boundary conditions have been considered and in each case we have identified the irreducible representations (IR) of the Virasoro algebra which build up the spectra. In this paper we will consider in detail the problem of the finite N correction terms (Privman and Fisher 1983, 1984, Luck 1985, Cardy 1986a, b, Henkel 1987, Reinicke 1986). We first summarise our previous results.

We consider the Hamiltonian of the Potts quantum chain

$$
\begin{equation*}
H=-\frac{2}{3 \sqrt{ } 3} \sum_{i=1}^{N}\left[\sigma_{i}+\sigma_{i}^{+}+\lambda\left(\Gamma_{i} \Gamma_{i+1}^{+}+\Gamma_{i}^{+} \Gamma_{i+1}\right)\right] \tag{1.1}
\end{equation*}
$$

where

$$
\sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{1.2}\\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad \Gamma=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \omega=\mathrm{e}^{2 \pi \mathrm{i} / 3} .
$$

Here λ has the meaning of the inverse of the temperature and N represents the number of sites. The Hamiltonian is self-dual and has a critical point at $\lambda=1$. The normalisation factor $2 / 3 \sqrt{ } 3$ which fixes the Euclidean timescale is taken from von Gehlen et al (1986). We specify the boundary conditions. If we take

$$
\begin{equation*}
\Gamma_{N+1}=\omega^{\check{\varrho}} \Gamma_{1} \tag{1.3}
\end{equation*}
$$

we denote the corresponding Hamiltonians by $H^{(\tilde{Q})}$. For free boundary conditions we have

$$
\begin{equation*}
\Gamma_{N+1}=0 \tag{1.4}
\end{equation*}
$$

and the corresponding Hamiltonian is $H^{(F)}$. Since the Hamiltonian (1.1) is Z_{3} symmetric, each of the matrices $H^{(\hat{Q})}$ and $H^{(F)}$ has a block-diagonal form: $H^{(\bar{Q})}$ contains the matrices $H_{Q}^{(\hat{Q})}$ and $H^{(F)}$ the matrices $H_{Q}^{(F)}(Q=0,1$ and 2). At $\lambda=1$ self-duality
and the invariance under charge conjugation of the Hamiltonian (1.1) give the following relations among the spectra of the matrices $H_{Q}^{(\bar{Q})}$ and $H_{Q}^{(F)}$:

$$
\begin{equation*}
H_{Q}^{(\tilde{Q})}=H_{Q}^{(Q)} \quad H_{1}^{(\tilde{Q})}=H_{2}^{(\bar{Q})} \quad H_{1}^{(F)}=H_{2}^{(F)} \tag{1.5}
\end{equation*}
$$

and we are thus left with five independent spectra: $H_{0}^{(0)}, H_{1}^{(0)}, H_{1}^{(1)}, H_{0}^{(F)}$ and $H_{1}^{(F)}$.
In the case of periodic ($H_{0}^{(0)}$ and $H_{1}^{(0)}$) and twisted ($H_{1}^{(1)}$) boundary conditions we can further prediagonalise the matrices using the translational invariance of the Hamiltonian. We denote by

$$
\begin{equation*}
E_{Q}^{(\tilde{Q})}(P ; s) \quad P=0,1,2 \ldots ; s=0,1,2 \ldots \tag{1.6}
\end{equation*}
$$

the eigenvalues of the matrices $H_{Q}^{(\tilde{Q})}$ corresponding to the momentum P. Here $s=0$ corresponds to the lowest eigenvalue, $s=1$ to the next higher one, etc. $E_{0}^{(0)}(0 ; 0) \equiv E_{0}^{(P)}$ corresponds to the ground-state energy of the Hamiltonian with periodic boundary conditions. The eigenvalues of $H_{Q}^{(F)}$ are denoted by $E_{Q}^{(F)}(s), s=0,1,2, \ldots E_{0}^{(F)}(0) \equiv$ $E_{0}^{(F)}$ denotes the ground-state energy of the Hamiltonian with free boundary conditions.

We now consider the following quantities which are relevant for finite-size scaling (Cardy 1986a):

$$
\begin{align*}
& \mathscr{E}_{Q}^{(\tilde{Q})}(P ; s)=\lim _{N \rightarrow \infty} \frac{N}{2 \pi}\left(E_{Q}^{\dot{Q}}(P ; s)-E_{0}^{(P)}\right) \\
& \mathscr{E}_{Q}^{(F)}(s)=\lim _{N \rightarrow \infty} \frac{N}{\pi}\left(E_{Q}^{(F)}(s)-E_{0}^{(F)}\right) . \tag{1.7}
\end{align*}
$$

It is a consequence of conformal invariance that the spectra given by equations (1.7) can be described by IR of the Virasoro algebra with a central charge depending on the universality class of the system. For the three-state Potts model the central charge is $c=\frac{4}{5}$ (Friedan et al 1984, Dotsenko 1984). We denote by Δ the highest weight, and by $\Delta+r$ the level of r having a degeneracy $d(\Delta, r)$ of one IR of the Virasoro algebra. The spectra $\mathscr{E}_{Q}^{(\hat{Q})}(P ; s)$ are given by the products of two IR (Δ and $\bar{\Delta}$) of two commuting Virasoro algebras with the same central charge. The contribution of one IR $(\Delta, \bar{\Delta})$ to the spectrum $\mathscr{E}_{Q}^{(Q)}(P ; s)$ is

$$
\begin{align*}
& \mathscr{C}_{Q}^{(\hat{(})}(\Delta+r, \bar{\Delta}+\bar{r})=\Delta+r+\bar{\Delta}+\bar{r} \\
& P=(\Delta+r)-(\bar{\Delta}+\bar{r})-\frac{1}{3} \tilde{Q} Q \quad r, \bar{r}=0,1,2, \ldots \tag{1.8}
\end{align*}
$$

The degeneracy of the level $\mathscr{E}_{Q}^{(\tilde{Q})}(\Delta+r, \bar{\Delta}+\bar{r})$ is $d(\Delta, r) d(\bar{\Delta}, \bar{r})$.
The spectra $\mathscr{E}_{Q}^{(F)}(s)$ are described by the IR of only one Virasoro algebra, namely an IR (Δ) gives a contribution

$$
\begin{equation*}
\mathscr{C}_{Q}^{(F)}=\Delta+r \quad r=0,1,2, \ldots \tag{1.9}
\end{equation*}
$$

with a degeneracy $d(\Delta, r)$. (The degeneracies $d(\Delta, r)$ can be computed using the character formulae of Rocha-Caridi (1985).)

It was established by numerical studies (von Gehlen and Rittenberg 1986a, b) and confirmed by analytical calculations (Cardy 1986b, c, Itzykson and Zuber 1986, Zuber 1986) that the spectra $\mathscr{E}_{Q}^{(\dot{Q})}$ and $\mathscr{E}_{Q}^{(F)}$ can be described by the following sums of iR of the Virasoro algebra:

$$
\begin{align*}
& \mathscr{C}_{0}^{(0)}(0,0) \oplus\left(\frac{2}{5}, \frac{2}{5}\right) \oplus\left(\frac{7}{5}, \frac{2}{5}\right) \oplus\left(\frac{2}{5}, \frac{7}{5}\right) \oplus\left(\frac{7}{5}, \frac{7}{5}\right) \oplus(3,0) \oplus(0,3) \oplus(3,3) \\
& \mathscr{C}_{1}^{(0)}=\left(\frac{1}{15}, \frac{1}{15}\right) \oplus\left(\frac{2}{3}, \frac{2}{3}\right) \\
& \mathscr{E}_{1}^{(1)}=\left(\frac{2}{5}, \frac{1}{15}\right) \oplus\left(0, \frac{2}{3}\right) \oplus\left(\frac{7}{5}, \frac{1}{15}\right) \oplus\left(3, \frac{2}{3}\right) \tag{1.10a}\\
& \mathscr{C}_{1}^{(2)}=\left(\frac{1}{15}, \frac{2}{5}\right) \oplus\left(\frac{2}{3}, 0\right) \oplus\left(\frac{1}{15}, \frac{7}{5}\right) \oplus\left(\frac{2}{3}, 3\right)
\end{align*}
$$

and

$$
\begin{align*}
& \mathscr{E}_{0}^{(F)}=(0) \oplus(3) \\
& \mathscr{E}_{1}^{(F)}=\left(\frac{2}{3}\right) . \tag{1.10b}
\end{align*}
$$

With this background in mind we can now formulate the problem we want to clarify in this paper. Through the identification provided by equations (1.8) and (1.9), we can label the levels for finite chains instead of $E_{Q}^{(\dot{Q})}(P ; s)$ by $E(\Delta+r, \bar{\Delta}+\bar{r} ; i)$ in the case of periodic and twisted boundary conditions and analogously for free boundary conditions by $E(\Delta+r ; i)$ instead of $E_{Q}^{(F)}(s)$. Here $i=1,2, \ldots, d(\Delta, r) d(\bar{\Delta}, \bar{r})$ for the periodic and twisted boundary conditions and $i=1,2, \ldots, d(\Delta, r)$ for the free boundary conditions case. By convention, if the level is not degenerate, we will drop the index i. Now we consider the quantities

$$
\begin{align*}
& \mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)=(N / 2 \pi)\left(E(\Delta+r, \bar{\Delta}+\bar{r} ; i)-E_{0}^{(P)}\right) \\
& \mathscr{F}(\Delta+r ; i)=(N / \pi)\left(E(\Delta+r ; i)-E_{0}^{(F)}\right) \tag{1.11}
\end{align*}
$$

which depend on N as do the $E(\Delta+r, \bar{\Delta}+\bar{r} ; i), E_{0}^{(P)}$, etc.
Obviously, the $\mathscr{E}_{Q}^{(\bar{Q})}(P ; s), \mathscr{E}_{Q}^{(F)}(s)$ of equation (1.7) are the limits $N \rightarrow \infty$ of the corresponding \mathscr{F}. We shall study how for large but finite N the $\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)$ approach $\Delta+r+\bar{\Delta}+\bar{r}$. Assuming power corrections we write

$$
\begin{equation*}
\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)=\Delta+r+\bar{\Delta}+\bar{r}+c_{1} N^{-\alpha_{1}}+c_{2} N^{-\alpha_{2}}+\ldots \tag{1.12}
\end{equation*}
$$

where $\alpha_{2}>\alpha_{1}$. The exponents α_{1} and α_{2} and the coefficients c_{1} and c_{2} will in general depend on the irreducible representation $(\Delta, \bar{\Delta})$, of the level (r, \bar{r}) and of the index i. It was Cardy (1986a, b) who pointed out that conformal invariance can give us much information on the α_{j} and $c_{j}(j=1,2, \ldots)$. We can do a similar study for the \mathscr{F} corresponding to the free boundary conditions case:

$$
\begin{equation*}
\mathscr{F}(\Delta+r, i)=\Delta+r+c_{1} N^{-\alpha_{1}}+c_{2} N^{-\alpha_{2}}+\ldots . \tag{1.13}
\end{equation*}
$$

There is, for the time being, no theory which can explain the finite-size corrections in the case of free boundary conditions.

The paper is organised as follows. In § 2 we present the raw numerical data for the \mathscr{F} corresponding to several levels. We then show the results of the fits which give the corresponding c and α appearing in equations (1.12) and (1.13). In $\S 3$ we show, following Cardy (1986a, b), that the α are related to the scaling dimensions of some conformal operators and that the c are related to expansion coefficients (Belavin et al 1984).

In § 4 we compare the numerical results of $\S 2$ with the theoretical predictions of \S 3. Our results are summarised in $\S 5$. In the appendix we derive some expansion coefficients from the four-point functions of Dotsenko (1984). These expansion coefficients are used in the calculation of the corrections to finite-size scaling.

2. Numerical studies of the corrections to finite-size scaling

In order to familiarise the reader with the numerical problems involved in our study, in tables 1 and 2 we give the values of $\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)$ and $\mathscr{F}(\Delta+r ; i)$ defined in equation (1.11) for several levels. Chains from 2 up to 14 sites have been considered for periodic and twisted boundary conditions and from 2 up to 12 sites for free boundary

N	$\left(\frac{2}{2}, \frac{2}{5}\right)$	($\frac{1}{15}, \frac{1}{15}$)	$\left(\frac{1}{15}+1, \frac{1}{15}\right)$	$\left(\frac{2}{3}, \frac{2}{3}\right)$	$\left(\frac{2}{5}, \frac{1}{15}\right)$	(0, $\frac{2}{3}$)
3	0.860929187429	0.139727774637	0.975320442667	1.188957756944	0.440624670027	0.627829136707
4	0.857345162666	0.137536701432	1.045259891347	1.241533826641	0.447855523550	0.645034392164
5	0.852084712808	0.136443073086	1.078394256822	1.269405512273	0.451890295377	0.652994085932
6	0.847242474641	0.135799194200	1.096459205633	1.285997222709	0.454453220281	0.657291435201
7	0.843101626873	0.135378678038	1.107299681174	1.296707568193	0.456223755942	0.659862519852
8	0.839604394604	0.135083793256	1.114270659338	1.304045395972	0.457520625330	0.661517648822
9	0.836639908683	0.134866036304	1.118992853373	1.309306601823	0.458512304935	0.662643192193
10	0.834105907381	0.134698811379	1.122323920292	1.313216535919	0.459295957677	0.663441916745
11	0.831919344044	0.134566398210	1.124750941341	1.316207605865	0.459931465535	0.664028359579
12	0.830015070329	0.134458943442	1.126566565954	1.318551000763	0.460457714981	0.664471104213
13	0.828342308451	0.134369973044	1.127954889855	1.320424044556	0.460901047691	0.664813210325
14	0.826861322116	0.134295065509		1.321946801444		
∞	0.820 (3)	0.1333 (1)	1.1344 (5)	1.3333 (5)	0.4667 (3)	0.66666 (3)

Table 2. $\mathscr{F}(\Delta+r ; i)$ defined in equation (1.11) for several levels and for various number of sites N. At the bottom of the table ($N=\infty$) we give the large- N estimates computed using the Van den Broeck-Schwartz approximants.

N	$(0+2)$	$(0+3)$ or (3)	($\frac{2}{3}$)	$\left(\frac{2}{3}+1\right)$	$\left(\frac{2}{3}+2 ; 1\right)$	$\left(\frac{2}{3}+3 ; 1\right)$	$\left(\frac{2}{3}+3 ; 2\right)$
2	1.40761927938	1.80646743053	0.47115135920	1.07134223664			
3	1.59574649625	2.12484413180	0.51880993089	1.25096893329		1.95000359045	2.43099524779
4	1.69362075761	2.30791852714	0.54648682656	1.34712126718	2.10622174046	2.43399753621	2.73673229384
5	1.75280094898	2.42577890292	0.56471979479	1.40630321078	2.20517997443	2.72844511306	2.92523098608
6	1.79224718656	2.50780625982	0.57771535412	1.44624868396	2.27326484338	2.91860175685	3.05092286250
7	1.82037169486	2.56817264474	0.58748987621	1.47500187333	2.32294027320	3.04904611973	3.14017712790
8	1.84143097157	2.61448462228	0.59513460558	1.49669594334	2.36079492065	3.14293271627	3.20649984796
9	1.85779573047	2.65117072363	0.60129354184	1.51365962838	2.39062007589	3.21315499427	3.25759545445
10	1.87088623074	2.68097780975	0.60637227223	1.52730086864	2.41474549259	3.26734077511	3.29811100444
11	1.88160337187	2.70569791884	0.61063950394	1.53851950666	2.43467949658	3.31023910952	3.33099922738
12	1.89054548559	2.72654924170	0.61428063443	1.54791699465	2.45144085977	3.34493657667	3.35821862433
∞	2.000 (5)	2.98 (3)	0.6662 (4)	1.668 (2)	2.66 (1)	3.64 (4)	3.66 (2)

conditions. The large N limit for the \mathscr{F} computed using Van den Broeck-Schwartz (1979) approximants is shown at the bottom of the tables. Comparing the values of the estimates with the expected values (see equations (1.12) and (1.13)) one gets a feeling of the errors involved. We would like to make a remark on the application of the Van den Broeck-Schwartz approximants to our problem. The approximants are defined as follows. Assume we have a set of numbers $A_{1}, A_{2}, \ldots, A_{N}$ converging to a limit A. We denote by $[n, L], L=0,1, \ldots$, new sets defined through the equations
$[n,-1]=\infty$
$[n, 0]=A_{n}$
$([n, L+1]-[n, L])^{-1}$

$$
\begin{align*}
= & -\beta([n, L-1]-[n, L])^{-1} \\
& +([n+1, L]-[n, L])^{-1}+([n-1, L]-[n, L])^{-1} \tag{2.1}
\end{align*}
$$

where β is a parameter. It was pointed out by Hamer and Barber (1981) that if the corrections terms to A are power behaved, the approximants are stable for $\beta=-1$. This stability for $\beta=-1$ was observed not only for the approximants shown in tables 1 and 2, but also for the other calculations which are described in this section.

We now consider the correction terms to the \mathscr{F} (see equations (1.12) and (1.13)). We start with the $\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)$. We first determine $\alpha_{1}^{\text {eff }}$. In order to do so, we consider the estimates
$\left(\alpha_{1}\right)_{N}=\{\ln [(N+1) / N]\}^{-1} \ln \left(\frac{\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)_{N}-(\Delta+r+\bar{\Delta}+\bar{r})}{\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i)_{N+1}-(\Delta+r+\bar{\Delta}+\bar{r})}\right)$
where N represents the number of sites. From the estimates $\left(\alpha_{1}\right)_{N}$ one obtains $\alpha_{1}^{\text {eff }}$ using Van den Broeck-Schwartz approximants. The results are shown in table 3. In order to exemplify how the approximants work, in table 4 we give the approximants

Table 3. Estimates for c_{1}, c_{2}, α_{1} and α_{2} defined by equation (1.12) (periodic and twisted boundary conditions) for several levels. The values of α_{1} and α_{2} assumed in the determination of c_{1} and c_{2} are also specified.

$(\Delta+r, \bar{\Delta}+\bar{r})$	$\alpha_{1}^{\text {eff }}$	c_{1}	$\alpha_{2}^{\text {eft }}$	c_{2}
$(0+2,0)$	2.01 (2)	$\begin{array}{r} -5.810(1) \\ \left(\alpha_{1}=2.0\right) \end{array}$	-	-
($\left.\frac{1}{15}, \frac{1}{15}\right)$	0.796 (10)	$\begin{aligned} & 0.00657(2) \\ & \left(\alpha_{1}=0.8\right) \end{aligned}$	1.98 (5)	$\begin{aligned} & 0.03238(2) \\ & \left(\alpha_{2}=2.1\right) \end{aligned}$
$\left(\frac{1}{15}+1, \frac{1}{15}\right)$	1.71 (5)	$\begin{aligned} & 0.034 \\ & \left(\alpha_{1}=0.8\right) \end{aligned}$		$\begin{aligned} & -1.6(1) \\ & \left(\alpha_{2}=2\right) \end{aligned}$
$\left(\frac{2}{5}, \frac{2}{5}\right)$	0.7998 (3)	$\begin{aligned} & 0.2364(2) \\ & \left(\alpha_{1}=0.8\right) \end{aligned}$	1.80 (2)	$\begin{gathered} -0.328(2) \\ \left(\alpha_{2}=2\right) \end{gathered}$
($\frac{2}{5}, \frac{1}{15}$)	0.82 (3)	$\begin{array}{r} -0.0395(3) \\ \left(\alpha_{1}=0.8\right) \end{array}$	1.80 (6)	$\begin{array}{r} -0.15(3) \\ \left(\alpha_{2}=2\right) \end{array}$
$\left(\frac{2}{5}, \frac{1}{15}+1\right)$	1.79	$\begin{aligned} & >-0.2 \\ & \quad\left(\alpha_{1}=0.8\right) \\ & -3.417(4) \\ & \left(\alpha_{1}=1.8\right) \end{aligned}$		
$\left(\frac{2}{3}, \frac{2}{3}\right)$	1.691 (2)	$\begin{gathered} -0.708(1) \\ \left(\alpha_{1}=1.6\right) \end{gathered}$		

Table 4. Van den Broeck-Schwartz approximants with $\beta=-1$ for $\alpha_{1}^{\text {eff }}$ corresponding to the level $\left(\frac{2}{5}, \frac{2}{5}\right)$.

	L					
n	0	1	2	3	4	5
1	0.2107320594					
2	0.4311888305	0.6280969357				
3	0.5351978824	0.6763658152	0.7965176465			
4	0.5950841840	0.7039133105	0.7980301924	0.7994916997		
5	0.6337135729	0.7216612838	0.7987675181	0.7997335156	0.7999916545	
6	0.6605538650	0.7340118063	0.7991833625	0.7998437650	0.8000480630	0.8000242323
7	0.6802115652	0.7430807920	0.7994375114	0.7999082095	0.7999960275	
8	0.6951868521	0.7500101406	0.7996020556	0.7999425950		
9	0.7069491907	0.7554694091	0.7997127415			
10	0.7164164606	0.7598765940				
11	0.7241902939					

for $\alpha_{1}^{\text {eff }}$ in the case of $\mathscr{F}\left(\frac{2}{5}, \frac{2}{5}\right)$. We notice from table 3 that the values of $\alpha_{1}^{\text {eff }}$ cluster into two groups. For the levels $\left(\frac{1}{15}, \frac{1}{15}\right),\left(\frac{2}{5}, \frac{2}{5}\right),\left(\frac{2}{5}, \frac{1}{15}\right)$ one finds $\alpha_{1}^{\text {eff }} \approx 0.8$ and for the others one finds $\alpha_{1}^{\text {eff }} \approx 1.8-2.0$. Since large values of $\alpha_{1}^{\text {eff }}$ can also be obtained from $\alpha_{1}=0.8$ and $\alpha_{2}=2$ with c_{1} and c_{2} having opposite signs (see equation (1.12)), we have assumed $\alpha_{1}=0.8$ for all the levels and have determined c_{1}. It turns out that for the level $\left(\frac{1}{15}+1, \frac{1}{15}\right)$ we find very stable approximants and less stable approximants for $\left(\frac{2}{5}, \frac{1}{15}+1\right)$. The ansatz $\alpha_{1}=0.8$ does not work for the levels $(0+2,0)$ and $\left(\frac{2}{3}, \frac{2}{3}\right)$. The values of the c_{1} are shown in table 3. Next we determine $\alpha_{2}^{\text {eff. We did it only for the }}$ levels where $\alpha_{1} \approx 0.8$. The corresponding values of $\alpha_{2}^{\text {eff }}$ are also shown in table 3. They are around 1.8-2.0. Next we have assumed $\alpha_{2}=2.0$ and have determined the c_{2}. In $\S 4$ we will discuss the interpretation of the results shown in table 3 .

We now turn to the problem of the corrections to finite-size scaling in the case of free boundary conditions. We have determined $\alpha_{1}^{\text {eff }}$ first (see equation (1.13)). The estimates for $\alpha_{1}^{\text {eff }}$ computed using the equivalent of equation (2.2) are shown in table 5. At the bottom of the table are the Van den Broeck-Schwartz approximants for $\alpha_{1}^{\text {eff }}$. To our surprise they all cluster around $\alpha_{1}=0.8$. We have done a fit to the \mathscr{F} taking $\alpha_{1}=0.8$ and assuming $\alpha_{2}=2$:

$$
\begin{equation*}
\mathscr{F}(\Delta+r ; i)=\Delta+r+c_{1} N^{-0.8}+c_{2} N^{-2} . \tag{2.3}
\end{equation*}
$$

The values for c_{1} and c_{2} are shown in table 6 . There is not yet a theory which can explain the value for α_{1} or the values of the c_{1} in the case of free boundary conditions but we shall return to this problem in another publication.

3. Breaking of conformal invariance

In this section we essentially follow Cardy (1986a, b). We consider first some relations which can be obtained using conformal invariance for the two- and three-point correlation functions.

In a conformal invariant theory in two dimensions, each primary field $\varphi(X, Y)$ is related to the highest weights $(\Delta, \bar{\Delta})$ of the tensor product of two irreducible representations of two commuting Virasoro algebras. The two-point correlation function is
Table 5. Values of $\left(\alpha_{1}\right)_{N}$ defined by equation (2.2) for several levels (free boundary conditions). At the bottom of the table ($N=\infty$) we give the large- N estimates computed using the Van den Broeck-Schwartz approximants.

N	$(0+2)$	$(0+3)$ or (3)	($\frac{2}{3}$)	$\left(\frac{2}{3}+1\right)$	$\left(\frac{2}{3}+2 ; 1\right)$	$\left(\frac{2}{3}+3 ; 1\right)$	$\left(\frac{2}{3}+3 ; 2\right)$
2	0.94239273	0.76522177	0.68907254	0.88568540			
3	0.96362792	0.81582533	0.72042902	0.91440886		1.15127261	0.98898098
4	0.96184631	0.83663263	0.73736155	0.91788804	0.87064027	1.22320812	1.01449157
5	0.95350716	0.84544083	0.74792387	0.91351182	0.87549536	1.24229066	1.01965886
6	0.94361719	0.84882241	0.75514402	0.90676011	0.87567287	1.24304015	1.01588597
7	0.93386082	0.84957389	0.76040134	0.89957702	0.87380269	1.23484401	1.00832011
8	0.92479759	0.84900562	0.76440989	0.89267765	0.87106114	1.22227126	0.99929348
9	0.91657290	0.84777452	0.76757503	0.88630741	0.86800469	1.20769296	0.98991071
10	0.90917575	0.84622582	0.77014351	0.88052321	0.86490413	1.19238932	0.98070159
11	0.90253915	0.84454661	0.77227403	0.87530634	0.86189105	1.17706503	0.97191310
∞	0.84 (3)	0.82 (2)	0.800 (4)	0.83 (2)	0.81 (4)	0.9 (1)	0.8 (1)

Table 6. Estimates for c_{1} and c_{2} defined by equation (2.3) (free boundary conditions) for several levels.

Level $(\Delta+r ; i)$	c_{1}	c_{2}
(2)	$-0.73(2)$	$-1.3(1)$
(3)	$-1.943(5)$	$-1.2(1)$
$\left(\frac{2}{3}\right)$	$-0.393(4)$	$-0.13(4)$
$\left(\frac{2}{3}+1\right)$	$-0.81(2)$	$-0.9(1)$
$\left(\frac{2}{3}+2 ; 1\right)$	$-1.49(4)$	$-1.5(1)$
$\left(\frac{2}{3}+3 ; 1\right)$	$-1.7(3)$	$-13(3)$
$\left(\frac{2}{3}+3 ; 2\right)$	$-2.0(2)$	$-6(3)$

completely determined:

$$
\begin{equation*}
\left\langle\varphi_{\Delta, \bar{\Delta}}\left(z_{1}, \bar{z}_{1}\right) \varphi_{\Delta, \bar{\Delta}}\left(z_{2}, \bar{z}_{2}\right)\right\rangle=\left(z_{1}-z_{2}\right)^{-2 \Delta}\left(\bar{z}_{1}-\bar{z}_{2}\right)^{-2 \bar{\Delta}} \tag{3.1}
\end{equation*}
$$

where

$$
z=X+\mathrm{i} Y \quad \bar{z}=X-\mathrm{i} Y
$$

The quantities $x=\Delta+\bar{\Delta}$ and $s=\Delta-\bar{\Delta}$ are called the scaling dimensions and the spin of the field $\varphi_{\Delta, \bar{\Delta}}$. Note that the right-hand side of equation (3.1) fixes the normalisation of the field $\varphi_{\Delta, \overline{\bar{a}}}$. The three-point function of primary fields is also fixed by conformal invariance:

$$
\begin{align*}
&\left\langle\varphi_{\Delta_{1}, \bar{\Delta}_{1}}\left(z_{1}, \bar{z}_{1}\right) \varphi_{\Delta_{2}, \bar{\Delta}_{2}}\left(z_{2}, \bar{z}_{2}\right) \varphi_{\Delta_{3}, \bar{\Delta}_{3}}\left(z_{3}, \bar{z}_{3}\right)\right\rangle \\
&= c_{\Delta_{1}, \Delta_{2}, \Delta_{3}} c_{\Delta_{1}}, \bar{\Delta}_{2}, \bar{\Delta}_{3}\left(z_{1}-z_{2}\right)^{\Delta_{3}-\Delta_{1}-\Delta_{2}}\left(\bar{z}_{1}-\bar{z}_{2}\right)^{\overline{3}_{3}-\bar{\Delta}_{1}-\bar{\Delta}_{2}}\left(z_{2}-z_{3}\right)^{\Delta_{1}-\Delta_{2}-\Delta_{3}} \\
& \times\left(\bar{z}_{2}-\bar{z}_{3}\right)^{\bar{\Delta}_{1}-\bar{\Delta}_{2}-\bar{\Delta}_{3}}\left(z_{3}-z_{1}\right)^{\Delta_{2}-\Delta_{3}-\Delta_{1}\left(\bar{z}_{3}-\bar{z}_{1}\right)^{\bar{\Delta}_{2}-\bar{\Delta}_{3}-\bar{\Delta}_{1}} .} \tag{3.2}
\end{align*}
$$

The $c_{\Delta_{1}, \Delta_{2}, \Delta_{3}}$ are called expansion coefficients and they are also fixed by the conformal theory (Belavin et al 1984).

Under a conformal transformation $w=w(z)$ the correlation function of primary fields transforms as follows ($w_{1}=w\left(z_{1}\right)$, etc):
$\left\langle\varphi_{\Delta_{1}, \bar{\Delta}_{1}}\left(w_{1}, \bar{w}_{1}\right) \ldots\right\rangle=\left(w^{\prime}\left(z_{1}\right)\right)^{-\Delta_{1}}\left(\bar{w}_{w^{\prime}\left(z_{1}\right)}\right)^{-\bar{\Delta}_{1}}\left\langle\varphi_{\Delta_{1}, \overline{\Delta_{1}}}\left(z_{1}, \bar{z}_{1}\right) \ldots\right\rangle$.
We now consider the conformal transformation

$$
\begin{equation*}
w=(N / 2 \pi) \ln z=\tau+\mathrm{i} v \tag{3.4}
\end{equation*}
$$

which maps the plane into the strip ($-\frac{1}{2} N \leqslant v \leqslant \frac{1}{2} N,-\infty<\tau<\infty$). As the result of the transformation (3.4), the two-point function has the following expression on the strip:

$$
\begin{align*}
&\left\langle\varphi_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \varphi_{\Delta, \bar{\Delta}}\left(v_{2}, \tau_{2}\right)\right\rangle \\
&=(2 \pi / N)^{2 x} \xi^{\Delta} \bar{\xi}^{\bar{\Delta}}(1-\xi)^{-2 \Delta}(1-\bar{\xi})^{-2 \bar{\Delta}} \\
&=(2 \pi / N)^{2 x} \sum_{r, \bar{r}=0}^{\infty} a_{r}(2 \Delta) a_{\bar{r}}(2 \bar{\Delta}) \\
& \times \exp [-(2 \pi / N)(x+r+\bar{r}) \tau-(2 \pi \mathrm{i} / N)(s+r-\bar{r}) v] \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
\xi=z_{1} / z_{2} \quad \tau=\tau_{2}-\tau_{1} \quad v=v_{2}-v_{1} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{r}(\alpha)=\frac{\Gamma(\alpha+r)}{r!\Gamma(\alpha)} \tag{3.7}
\end{equation*}
$$

For the three-point functions of two primary fields $\varphi_{\Delta, \bar{\Delta}}$ and one spin-zero primary field $\varphi_{\Delta_{1}, \Delta_{1}}$ (this is the quantity of interest for our calculations) we have

$$
\begin{align*}
&\left\langle\varphi_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \varphi_{\Delta_{1}, \Delta_{1}}\left(v_{2}, \tau_{2}\right) \varphi_{\Delta, \bar{\Delta}}\left(v_{3}, \tau_{3}\right)\right\rangle \\
&= c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}}(2 \pi / N)^{2 x+x_{1}}\left(\xi_{1} \xi_{2}\right)^{2 \Delta}\left(\bar{\xi}_{1} \bar{\xi}_{2}\right)^{2 \bar{\Delta}}\left(\left|1-\xi_{1}\right|\left|1-\xi_{2}\right|\right)^{-2 \Delta_{1}} \\
& \times\left(1-\xi_{1} \xi_{2}\right)^{\Delta_{1}-2 \Delta}\left(1-\bar{\xi}_{1} \bar{\xi}_{2}\right)^{\Delta_{1}-2 \bar{\Delta}} \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
\xi_{1}=\exp (2 \pi / N)\left(w_{1}-w_{2}\right) \quad \xi_{2}=\exp (2 \pi / N)\left(w_{2}-w_{3}\right) \tag{3.9}
\end{equation*}
$$

We now write the two-point function (3.5) using the spectral decomposition and equations (1.7) and (1.8):

$$
\begin{align*}
&\left\langle\varphi_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \varphi_{\Delta, \bar{\Delta}}\left(v_{2}, \tau_{2}\right)\right\rangle=\langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \hat{\varphi}_{\Delta, \bar{\Delta}}\left(v_{2}, \tau_{2}\right)|0\rangle \\
&=\langle 0| \exp \left(-H \tau_{1}-\mathrm{i} \hat{P} v_{1}\right) \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0) \exp (-H \tau-\mathrm{i} \hat{P}) \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0) \\
& \times \exp \left(H \tau_{2}+\mathrm{i} \hat{P} v_{2}\right)|0\rangle \\
&= \sum_{i, r, \bar{r}}\langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|\Delta+r, \bar{\Delta}+\bar{r} ; i\rangle\langle\Delta+r, \bar{\Delta}+\bar{r} ; i| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|0\rangle \\
& \times \exp [-(2 \pi / N)(x+r+\bar{r}) \tau-(2 \pi \mathrm{i} / N)(s+r-\bar{r}) v] \tag{3.10}
\end{align*}
$$

where H is the Hamiltonian, \hat{P} is the momentum operator and the summation over i is over the various degeneracies. We now compare equations (3.5) and (3.10) and obtain

$$
\begin{align*}
& \langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|\Delta, \bar{\Delta}\rangle\langle\Delta, \bar{\Delta}| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|0\rangle=(2 \pi / N)^{2 x} \\
& \langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|\Delta+1, \bar{\Delta}\rangle\langle\Delta+1, \bar{\Delta}| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|0\rangle=2 \Delta(2 \pi / N)^{2 x} \tag{3.11}
\end{align*}
$$

The three-point function in this limit can also be written using the spectral decomposition. One finds

$$
\begin{align*}
&\left\langle\varphi_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \varphi_{\Delta_{1}, \Delta_{1}}\left(v_{2}, \tau_{2}\right) \varphi_{\Delta, \bar{\Delta}}\left(v_{3}, \tau_{3}\right)\right\rangle \\
&= c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}}(2 \pi / N)^{2 x+x_{1}}\left(\xi_{1} \xi_{2}\right)^{2 \Delta}\left(\bar{\xi}_{1} \bar{\xi}_{2}\right)^{2 \bar{\Delta}} \\
& \times\left[1+\left(\Delta_{1}^{2}-\Delta_{1}+2 \Delta\right) \xi_{1} \xi_{2}+\ldots\right] . \tag{3.12}
\end{align*}
$$

The three-point function in this limit can also be written using the spectral decomposition. One finds

$$
\begin{align*}
&\langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}\left(v_{1}, \tau_{1}\right) \hat{\varphi}_{\Delta_{1}, \Delta_{1}}\left(v_{2}, \tau_{2}\right) \hat{\varphi}_{\Delta, \bar{\Delta}}\left(v_{3}, \tau_{3}\right)|0\rangle \\
&=\left(\xi_{1} \xi_{2}\right)^{\Delta}\left(\bar{\xi}_{1} \bar{\xi}_{2}\right)^{\bar{\Delta}}\left(\langle 0| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|\Delta, \bar{\Delta}\rangle\langle\Delta, \bar{\Delta}| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|0\rangle\right. \\
& \times\langle\Delta, \bar{\Delta}| \hat{\varphi}_{\Delta_{1}, \Delta 1}(0,0)|\Delta, \bar{\Delta}\rangle+\xi_{1} \xi_{2}\left(0\left|\hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)\right| \Delta+1, \bar{\Delta}\right\rangle \\
&\left.\times\langle\Delta+1, \bar{\Delta}| \hat{\varphi}_{\Delta, \bar{\Delta}}(0,0)|0\rangle\langle\Delta+1, \bar{\Delta}| \hat{\varphi}_{\Delta_{1}, \Delta_{2}}(0,0)|\Delta+1, \bar{\Delta}\rangle+\ldots\right) . \tag{3.13}
\end{align*}
$$

We compare equations (3.12) and (3.13) and with the help of equations (3.11) obtain

$$
\begin{align*}
& \langle\Delta, \bar{\Delta}| \hat{\varphi}_{\Delta_{1}, \Delta_{1}}(0,0)|\Delta, \bar{\Delta}\rangle=(2 \pi / N)^{x_{1}} c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}} \tag{3.14a}\\
& \langle\Delta+1, \bar{\Delta}| \hat{\varphi}_{\Delta_{1}, \Delta_{1}}(0,0)|\Delta+1, \bar{\Delta}\rangle=(2 \pi / N)^{x_{1}}\left[1+\left(\Delta_{1}^{2}-\Delta_{1}\right) / 2 \Delta\right] c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}} \tag{3.14b}
\end{align*}
$$

We now assume that the conformal invariant theory described by the Hamiltonian H is perturbed by an additional term:

$$
\begin{equation*}
\tilde{H}=H+g \int_{-N / 2}^{N / 2} \hat{\varphi}_{\Delta_{1}, \Delta_{1}}(v, 0) \mathrm{d} v \tag{3.15}
\end{equation*}
$$

where \tilde{H} is the new Hamiltonian and g is a coupling constant. We apply standard perturbation theory and stop at the first order:

$$
\begin{align*}
& E^{(P)}=\langle 0| \tilde{H}|0\rangle=\langle 0| H|0\rangle=E_{\mathrm{c}}^{(P)} \tag{3.16a}\\
& \begin{array}{l}
E(\Delta+r, \bar{\Delta}+\bar{r} ; i)=\langle\Delta+r, \bar{\Delta}+\bar{r} ; i| \tilde{H}|\Delta+r, \bar{\Delta}+\bar{r} ; i\rangle \\
\quad=E_{\mathrm{c}}(\Delta+r, \bar{\Delta}+\bar{r} ; i)+N g\langle\Delta+r, \bar{\Delta}+\bar{r} ; i| \hat{\varphi}_{\Delta_{t}, \Delta_{1}}(0,0)|\Delta+r, \bar{\Delta}+\bar{r} ; i\rangle
\end{array}
\end{align*}
$$

Here $E_{\mathrm{c}}^{(P)}$ and $E_{\mathrm{c}}(\Delta, \bar{\Delta} ; i)$ are the eigenvalues of the unperturbed Hamiltonian. From equations ($3.16 a, b$) and (1.11), we obtain

$$
\begin{align*}
\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r} ; i) & =\Delta+r+\bar{\Delta}+\bar{r} \\
+ & \left(N^{2} / 2 \pi\right) g\langle\Delta+r, \bar{\Delta}+\bar{r} ; i| \hat{\varphi}_{\Delta_{1}, \Delta_{1}}(0,0)|\Delta+r, \bar{\Delta}+\bar{r} ; i\rangle . \tag{3.17}
\end{align*}
$$

If we specialise to the levels considered in equations ($3.14 a, b$), we obtain
$\mathscr{F}(\Delta, \bar{\Delta})=\Delta+\bar{\Delta}+\left[g(2 \pi)^{x_{1}-1} N^{2-x_{1}}\right] c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}}$
$\mathscr{F}(\Delta+1, \bar{\Delta})=\Delta+1+\bar{\Delta}+\left[g(2 \pi)^{x_{1}-1} N^{2-x_{1}}\right]\left[1+\left(\Delta_{1}^{2}-\Delta_{1}\right) / 2 \Delta\right] c_{\Delta, \Delta, \Delta_{1}} c_{\bar{\Delta}, \bar{\Delta}, \Delta_{1}}$.
From equations $(3.18 a, b)$ we learn that in the first order in $\left[g N^{2-x_{1}}(2 \pi)^{x_{1}-1}\right]$ the \mathscr{F} can be obtained from the knowledge of the three-point function of the conformal theory. Reinicke (1986) has shown that the higher-order corrections can be obtained from the n-point correlation functions of the conformal theory (the four-point function determines the quadratic correction, etc).

In equation (3.15) we made the hypothesis that the perturbation is given by the primary operator $\hat{\varphi}_{\Delta_{1}, \Delta_{1}}(v, \tau)$. It is interesting to consider instead the operator $\hat{\varphi}_{2,2}(v, \tau)$ which corresponds to the descendents $r=\bar{r}=2$ of the unit operator ($\Delta_{1}=\bar{\Delta}_{1}=0$). In this case one obtains instead of (3.18a)

$$
\begin{equation*}
\mathscr{F}(\Delta, \bar{\Delta})=\Delta+\bar{\Delta}+g(2 \pi)^{3} N^{-2}\left[\left(\Delta-\frac{1}{24} c \delta_{\Delta, 0}\right)\left(\bar{\Delta}-\frac{1}{24} c \delta_{\bar{\Delta}, 0}\right)-\left(\frac{1}{24} c\right)^{2}\right] . \tag{3.19}
\end{equation*}
$$

This result was obtained by Reinicke (1986). Notice that $\hat{\varphi}_{2,2}(v, \tau)$ gives 'analytic' contributions to the \mathscr{F}. With the equations (3.18) and (3.19) at hand we can now try to give an interpretation to the results obtained in $\S 2$.

4. Comparison of the predictions of conformal invariance and the numerical fits

We have seen in $\S 2$ that the correction terms to the \mathscr{F} given by equation (1.12) can be described by fits of the form

$$
\begin{equation*}
\mathscr{F}(\Delta+r, \bar{\Delta}+\bar{r})=\Delta+\bar{\Delta}+r+\bar{r}+A_{1} N^{-0.8}+A_{2} N^{-2}+\ldots \tag{4.1}
\end{equation*}
$$

where the values of the coefficients A_{1} and A_{2} for various levels can be obtained from table 3. We first consider the $N^{-0.8}$ correction term in equation (4.1). From equations (3.18) we learn that

$$
\begin{equation*}
\Delta_{1}=\frac{1}{2} x_{1}=\frac{7}{5} \tag{4.2}
\end{equation*}
$$

and that the leading correction to finite-size scaling is indeed given by the next to leading thermal exponent (Privman and Fisher 1983). In order to derive the coefficients A_{1} in equation (4.1), we use equations (3.18) to which one has to add the numerical values of the expansion coefficients $c_{\Delta, \Delta, 7 / 5}$. From Belavin et al (1984) we learn which expansion coefficients $c_{\Delta_{1}, \Delta_{2}, \Delta_{3}}$ are different from zero; they are shown in table 7. From this table we obtain

$$
\begin{equation*}
c_{0,0,7 / 5}=c_{2 / 3,2 / 3.7 / 5}=0 \tag{4.3}
\end{equation*}
$$

and thus the A_{1} for the levels $(0+2,0)$ and $\left(\frac{2}{3}, \frac{2}{3}\right)$ have to vanish in agreement with table 3. In order to obtain the remaining non-vanishing coefficients we use the four-point function of Dotsenko (1984) and obtain (see the appendix)

$$
\begin{equation*}
\left(c_{2 / 5,2 / 5,7 / 5}\right)^{2}=\frac{6}{7}\left(\frac{\Gamma\left(\frac{3}{5}\right)}{\Gamma\left(\frac{2}{5}\right)}\right)^{3 / 2}\left(\frac{\Gamma\left(\frac{1}{5}\right)}{\Gamma\left(\frac{4}{5}\right)}\right)^{1 / 2} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(c_{2 / 5,2 / 5,7 / 5}\right)^{2}=36\left(c_{1 / 15,1 / 15,7 / 5}\right)^{2} \tag{4.5a}
\end{equation*}
$$

As suggested by the results of table 3 , we take the following solution of equation (4.5a):

$$
\begin{equation*}
c_{2 / 5,2 / 5,7 / 5}=-6 c_{1 / 15,1 / 15,7 / 5} . \tag{4.5b}
\end{equation*}
$$

We can now use equation (4.5b) together with equations ($3.18 a, b$) and obtain the A_{1} for all levels if we specify one of them (the coupling constant g is unknown). Since the errors for the level $\left(\frac{2}{5}, \frac{2}{5}\right)$ are the smallest, we have used the corresponding value of A_{1} in order to determine the others. The expected values for the $A_{1}\left(A_{1}^{\text {exp }}\right)$ are compared in table 8 with the values obtained from table 3 . The agreement between

Table 7. Values of Δ_{3} for which the expansion coefficients $c_{\Delta_{1}, \Delta_{2}, \Delta_{3}}=c_{\Delta_{2}, \Delta_{1}, \Delta_{3}}$ are non-zero.

Δ_{1}	Δ_{2}					
	(0)	(3)	($\frac{7}{3}$)	($\frac{2}{5}$)	($\frac{2}{3}$)	($\frac{1}{15}$)
(0)	(0)	(3)	(${ }_{5}^{2}$)	(${ }^{2}$)	(${ }^{\frac{2}{3} \text {) }}$	($\frac{1}{15}$)
(3)	-	(0)	($\frac{2}{5}$)	(${ }^{\frac{7}{3} \text {) }}$	($\frac{2}{3}$)	$\left(\frac{2}{3}\right) \oplus\left(\frac{1}{15}\right)$
$\left(\frac{7}{5}\right)$	-	-	$(0) \oplus\left(\frac{7}{5}\right)$	($\frac{2}{5}$)	($\frac{1}{15}$)	$\left(\frac{2}{3}\right) \oplus\left(\frac{1}{15}\right)$
(${ }_{5}$)	-	-	-	(0) $\oplus\left(\frac{7}{5}\right)$	(15)	$\left(\frac{2}{3}\right) \oplus\left(\frac{1}{15}\right)$
($\frac{2}{3}$)	-	-	-	-	$(0) \oplus(3) \oplus\left(\frac{2}{3}\right)$	$\left(\frac{7}{5}\right) \oplus\left(\frac{1}{5}\right) \oplus\left(\frac{1}{15}\right)$
($\frac{1}{15}$)	-	-	-	-	-	$(0) \oplus(3) \oplus\left(\frac{7}{5}\right) \oplus\left(\frac{1}{3}\right) \oplus\left(\frac{2}{3}\right) \oplus\left(\frac{1}{15}\right)$

Table 8. Comparison between the values of A_{1} computed using conformal invariance ($A_{1}^{\text {eff }}$) and those determined numerically.

Level $(\Delta+r, \bar{\Delta}+\bar{r})$	$A_{1}^{\text {exp }}$	A_{1}
$(0+2,0)$	0	0
$\left(\frac{1}{15}, \frac{1}{15}\right)$	0.006566	$0.00657(2)$
$\left(\frac{1}{15}+1, \frac{1}{15}\right)$	0.03414	$0.034(2)$
$\left(\frac{2}{5}, \frac{1}{15}\right)$	-0.0394	$-0.0395(3)$
$\left(\frac{2}{5}, \frac{1}{15}+1\right)$	-0.2049	>-0.2
$\left(\frac{2}{3}, \frac{2}{3}\right)$	0	0

the two sets of A_{1} is very good. We have thus shown that the leading correction to the \mathscr{F} can be understood using the calculations of § 2 . We now proceed with the second correction term ($A_{2} N^{-2}$). This term has to be considered with care. It is clear that a correction term $N^{-1.6}$ should be present (this is the second-order correction coming from the same operator which gave us $N^{-0.8}$ in first order). We can assume that numerically this term is negligible in the interval of N we are considering and again try to determine the coefficients A_{2} assuming that one of them is known. This check can be done using equation (3.19). This analysis can be performed using the values of A_{2} which can be obtained from table 3. The result is negative. In order to illustrate the point, let us consider the ratio of the A_{2} corresponding to the levels $\left(\frac{2}{5}, \frac{2}{5}\right)$ and ($\frac{1}{15}, \frac{1}{15}$). We find

$$
\begin{equation*}
\frac{A_{2}\left(\frac{2}{5}, \frac{2}{5}\right)}{A_{2}\left(\frac{1}{15}, \frac{1}{15}\right)}=\frac{143}{3} \tag{4.6a}
\end{equation*}
$$

from equation (3.19) and

$$
\begin{equation*}
\frac{A_{2}\left(\frac{2}{5}, \frac{2}{5}\right)}{A_{2}\left(\frac{1}{15}, \frac{1}{15}\right)}=-10.1 \tag{4.6b}
\end{equation*}
$$

from table 3. Many explanations for this mismatch are possible. The most obvious of them is that the $A_{2} N^{-2}$ terms in our fits are effective representations for combinations of the form

$$
\begin{equation*}
c_{2} N^{-1.6}+c_{3} N^{-2}+\ldots \tag{4.7}
\end{equation*}
$$

In that case it is hopeless to establish numerically the separate contributions. We would like also to mention that in the case of the Ising model the 'analytic' correction (N^{-2}) is not given by the operator $\varphi_{2,2}(v, \tau)$ used to derive equation (3.19) but by a descendent of the energy density operator (Reinicke 1986). It is thus possible that in the three-state Potts model there are no $\left(N^{-2}\right)$ correction terms present at all.

5. Conclusions

We have analysed numerically the corrections to finite-size scaling for various levels and different boundary conditions. Our results are summarised in tables 3 and 6. In the case of periodic and twisted boundary conditions we show that the leading correction term is given by $N^{-0.8}$ terms. We find the coefficient of the $N^{-0.8}$ corrections to be in excellent numerical agreement with the short-distance expansion coefficients which appear in a first-order perturbation treatment of the breaking of conformal invariance. The next to leading correction term is not yet under control.

In the case of free boundary conditions the leading correction term again behaves like $N^{-0.8}$. The theoretical determination of the coefficients in this case will be published elsewhere.

Acknowledgments

The authors would like to thank M Henkel and P Reinicke for useful discussions.

Appendix. Determination of the expansion coefficients from the four-point correlation functions

We consider the four-point functions for the energy density ($\varphi_{2 / 5,2 / 5}$) and $\operatorname{spin}\left(\varphi_{1 / 15,1 / 15}\right)$ operators in the plane (Dotsenko 1984):

$$
\begin{align*}
& \left\langle\varphi_{2 / 5,2 / 5}\left(z_{1}, \bar{z}_{1}\right) \varphi_{2 / 5,2 / 5}\left(z_{2}, \bar{z}_{2}\right) \varphi_{2 / 5,2 / 5}\left(z_{3}, \bar{z}_{3}\right) \varphi_{2 / 5,2 / 5}\left(z_{4}, \bar{z}_{4}\right)\right\rangle \\
& =A\left|\frac{z_{12} z_{34}}{z_{13} z_{32} z_{24} z_{14}}\right|^{8 / 5}\left|F\left(-\frac{8}{5},-\frac{1}{5},-\frac{2}{5} ; \eta\right)\right|^{2} \\
& \tag{A1a}\\
& +B \frac{\mid z_{13} z_{32} z_{24} z_{14} / 5}{\left|z_{12} z_{34}\right|^{4}}\left|F\left(\frac{6}{5}, \frac{13}{5}, \frac{12}{5} ; \eta\right)\right|^{2}
\end{align*}
$$

and

$$
\begin{align*}
&\left\langle\varphi_{1 / 15,1 / 15}\left(z_{1}, \bar{z}_{1}\right) \varphi_{1 / 15,1 / 15}\left(z_{2}, \bar{z}_{2}\right) \varphi_{2 / 5,2 / 5}\left(z_{3}, \bar{z}_{3}\right) \varphi_{2 / 5,2 / 5}\left(z_{4}, \bar{z}_{4}\right)\right\rangle \\
&= C \frac{\left|z_{12}\right|^{4 / 3}}{\left|z_{13} z_{32} z_{24} z_{14}\right|^{4 / 5}}\left|F\left(-\frac{4}{5}, \frac{3}{5}, \frac{2}{5} ; \eta\right)\right|^{2} \\
&+D \frac{\left|z_{13} z_{32} z_{24} z_{14}\right|^{2 / 5}}{\left|z_{12}\right|^{16 / 15}\left|z_{34}\right|^{12 / 5}}\left|F\left(\frac{2}{5}, \frac{9}{5}, \frac{8}{5} ; \eta\right)\right|^{2} \tag{A1b}
\end{align*}
$$

where

$$
\begin{align*}
& z_{i j}=z_{i}-z_{j} \quad \eta=z_{13} z_{24} / z_{12} z_{34} \\
& A=\frac{\left(\Gamma\left(\frac{1}{5}\right) \Gamma\left(\frac{4}{5}\right)\right)^{2}}{\Gamma\left(\frac{3}{5}\right) \Gamma\left(\frac{2}{5}\right)}\left(\Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{3}{5}\right)+\Gamma\left(\frac{1}{5}\right) \Gamma\left(\frac{4}{5}\right)\right)^{-1} \\
& B=\frac{36}{49} \frac{\left(\Gamma\left(\frac{1}{5}\right)\right)^{3}\left(\Gamma\left(\frac{3}{5}\right)\right)^{2} \Gamma\left(\frac{4}{5}\right)}{\left(\Gamma\left(\frac{2}{5}\right)\right)^{4}}\left(\Gamma\left(\frac{2}{5}\right) \Gamma\left(\frac{3}{5}\right)+\Gamma\left(\frac{1}{5}\right) \Gamma\left(\frac{4}{5}\right)\right)^{-1} \tag{A2}\\
& C=\frac{49}{144} B \quad D=\frac{4}{9} A
\end{align*}
$$

and the F denote standard hypergeometric functions. The normalisation of A, B, C, D is chosen to obtain the correct normalisation in equation (3.11).

We perform the conformal transformation (3.4) and use equation (3.3) in order to obtain the correlation functions on the strip. Using

$$
\begin{equation*}
\xi_{j}=z_{j} / z_{j+1}=\exp \left\{(2 \pi / N)\left[\left(\tau_{j}-\tau_{j+1}\right)+\mathrm{i}\left(v_{j}-v_{j+1}\right)\right]\right\} \tag{A3}
\end{equation*}
$$

we find in the small ξ limit:

$$
\begin{align*}
\left\langle\varphi _ { 2 / 5 , 2 / 5 } \left(v_{1},\right.\right. & \left.\left.\tau_{1}\right) \varphi_{2 / 5,2 / 5}\left(v_{2}, \tau_{2}\right) \varphi_{2 / 5,2 / 5}\left(v_{3}, \tau_{3}\right) \varphi_{2 / 5,2 / 5}\left(v_{4}, \tau_{4}\right)\right\rangle \\
= & \left(\frac{2 \pi}{N}\right)^{16 / 5}\left|\xi_{1}\right|^{4 / 5}\left|\xi_{3}\right|^{4 / 5}\left[1+\frac{4}{25}\left|\xi_{2}\right|^{4}\right. \\
& \left.+\left(\frac{6}{7}\right)^{2}\left(\frac{\Gamma\left(\frac{3}{5}\right)}{\Gamma\left(\frac{2}{5}\right)}\right)^{3} \frac{\Gamma\left(\frac{1}{5}\right)}{\Gamma\left(\frac{4}{5}\right)}\left|\xi_{2}\right|^{14 / 5}+\ldots\right] \tag{A4a}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle\varphi _ { 1 / 1 5 , 1 / 1 5 } \left(v_{1},\right.\right. & \left.\left.\tau_{1}\right) \varphi_{1 / 15,1 / 15}\left(v_{2}, \tau_{2}\right) \varphi_{2 / 5,2 / 5}\left(v_{3}, \tau_{3}\right) \varphi_{2 / 5,2 / 5}\left(v_{4}, \tau_{4}\right)\right\rangle \\
= & \left(\frac{2 \pi}{N}\right)^{28 / 15}\left|\xi_{1}\right|^{2 / 15}\left|\xi_{3}\right|^{4 / 5}\left[1+\frac{1}{(15)^{2}}\left|\xi_{2}\right|^{4}\right. \\
& \left.+\left(\frac{1}{7}\right)^{2}\left(\frac{\Gamma\left(\frac{3}{5}\right)}{\Gamma\left(\frac{2}{5}\right)}\right)^{3} \frac{\Gamma\left(\frac{1}{5}\right)}{\Gamma\left(\frac{4}{5}\right)}\left|\xi_{2}\right|^{14 / 5}+\ldots\right] \tag{A4b}
\end{align*}
$$

It is easy to show, applying the methods of $\S 3$, that one has in general:

$$
\begin{align*}
&\left\langle\varphi_{\Delta_{1}, \bar{\Delta}_{1}}\left(v_{1}, \tau_{1}\right) \varphi_{\Delta_{1}, \bar{\Delta}_{1}}\left(v_{2}, \tau_{2}\right) \varphi_{\Delta_{2}, \bar{\Delta}_{2}}\left(v_{3}, \tau_{3}\right) \varphi_{\Delta_{2}, \bar{\Delta}_{2}}\left(v_{4}, \tau_{4}\right)\right\rangle \\
&=\left(\frac{2 \pi}{N}\right)^{2 x_{1}+2 x_{2}} \xi_{1}^{\Delta_{1}} \bar{\xi}_{1}^{\bar{\Delta}_{1}} \xi_{3^{\Delta}}^{\Delta_{k}} \bar{\xi}_{3}^{\bar{\Delta}_{2}} \\
& \times \sum_{k} c_{\Delta_{1}, \Delta_{1}, \Delta_{k}} c_{\Delta_{2}, \Delta_{2}, \Delta_{k}} c_{\bar{\Delta}_{1}, \bar{\Delta}_{1}, \bar{\Delta}_{k}} c_{\bar{\Delta}_{2}, \bar{\Delta}_{2}, \bar{\Delta}_{k}} \xi_{2}^{\Delta_{k}^{k}} \bar{\xi}_{2}^{\bar{\Delta}_{k}} \tag{A5}
\end{align*}
$$

From equations (A4a,b) and (A5) we obtain

$$
\begin{equation*}
\left(c_{2 / 5,2 / 5,7 / 5}\right)^{2}=\frac{6}{7}\left(\frac{\Gamma\left(\frac{3}{5}\right)}{\Gamma\left(\frac{2}{5}\right)}\right)^{3 / 2}\left(\frac{\Gamma\left(\frac{1}{5}\right)}{\Gamma\left(\frac{4}{5}\right)}\right)^{1 / 2}=36\left(c_{1 / 15,1 / 15,7 / 5}\right)^{2} . \tag{A6}
\end{equation*}
$$

The expansion coefficients given in equation (A6) are used in § 4. In a similar way we obtain

$$
\begin{align*}
& \left(c_{1 / 15,1 / 15,2 / 5}\right)^{2}=\frac{7}{12}\left(c_{2 / 5,2 / 5,7 / 5}\right)^{2} \\
& \left(c_{1 / 15,2 / 5,2 / 3}\right)^{2}=\frac{2}{3} . \tag{A7}
\end{align*}
$$

The expansion coefficients given in equation (A7) might be useful for other applications.

References

Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241333
Cardy J L 1986a Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: Academic) to be published

- 1986b Nucl. Phys. B 270186
-_ 1986c Nucl. Phys. B 275200
Dotsenko Vl S 1984 Nucl. Phys. B 23554
Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 521575
Hamer C J and Barber M N 1981 J. Phys. A: Math. Gen. 142009
Henkel M 1987 J. Phys. A: Math. Gen. 20995
Itzykson C and Zuber J-B 1986 Nucl. Phys. B 275581
Luck J M 1985 Phys. Rev. B 313069
Privman V and Fisher M E 1983 J. Phys. A: Math. Gen. 16 L295
-_ 1984 Phys. Rev. B 30322
Reinicke P 1986 Preprint Bonn HE-86-23
Rocha-Caridi A 1985 Vertex Operators in Mathematics and Physics ed J Lepovsky (Berlin: Springer) p 451
Van den Broeck J M and Schwartz L W 1979 SIAM J. Math. Anal. 10639
von Gehlen G and Rittenberg V 1986a J. Phys. A: Math. Gen. 19 L625
- 1986b J. Phys. A: Math. Gen. 19 L631
von Gehlen G, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107
Zuber J-B 1986 Phys. Lett. 176B 127

