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Conformal invariance and corrections to finite-size scaling: 
applications to the three-state Potts model 

G von Gehlen, V Rittenberg and T Vescan 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D - 5 3 0 0  Bonn 1, West Germany 

Received 14 July 1986 

Abstract. Corrections to finite-size scaling are determined numerically for several levels 
of the three-state Potts quantum chain with various boundary conditions. It is found that 
the leading correction term behaves like W O * .  In the case of periodic and twisted boundary 
conditions the coefficients of the N-O * term are determined by the three-point correlation 
functions of the conformal theory. 

1. Introduction 

In two previous letters (von Gehlen and Rittenberg 1986a, b) we have given the operator 
content of the finite-size scaling limit of the spectrum of the three-state Potts quantum 
chain at the critical point. Various boundary conditions have been considered and in 
each case we have identified the irreducible representations ( I R )  of the Virasoro algebra 
which build up the spectra. In this paper we will consider in detail the problem of 
the finite N correction terms (Privman and Fisher 1983, 1984, Luck 1985, Cardy 
1986a, b, Henkel 1987, Reinicke 1986). We first summarise our previous results. 

We consider the Hamiltonian of the Potts quantum chain 
? N  

where 

1 0 0  0 0 1  
r=[; ; .j r=(; ; ;) w =e2ni/3. (1.2) 

Here A has the meaning of the inverse of the temperature and N represents the 
number of sites. The Hamiltonian is self-dual and has a critical point at A = 1. The 
normalisation factor 2/343 which fixes the Euclidean timescale is taken from von 
Gehlen et a1 (1986). We specify the boundary conditions. If we take 

we denote the corresponding Hamiltonians by H'O'. For free boundary conditions 
we have 

r N + 1  = o  (1.4) 
and the corresponding Hamiltonian is H ' F ' .  Since the Hamiltonian (1.1) is 2, sym- 
metric, each of the matrices H'O' and H ' F '  has a block-diagonal form: H'O' contains 
the matrices H&" and H'F'  the matrices H F '  (Q = 0, 1 and 2). At A = 1 self-duality 
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2578 G von Gehlen, V Rittenberg and T Vescan 

and the invariance under charge conjugation of the Hamiltonian (1.1) give the following 
relations among the spectra of the matrices Hh0’ and H C ’ :  

and we are thus left with five independent spectra: Hio’, Hio’, Hi’) ,  HiF’  and H i F ’ .  
In the case of periodic ( Hio’ and H‘,’’) and twisted (H:’’)  boundary conditions we 

can further prediagonalise the matrices using the translational invariance of the Hamil- 
tonian. We denote by 

E$’( P ;  s) P=O, 1 , 2 . .  .; s=o,  1 , 2 . .  * (1.6) 
the eigenvalues of the matrices H&“ corresponding to the momentum P. Here s = 0 
corresponds to the lowest eigenvalue, s = 1 to the next higher one, etc. Ebo’(O; 0) 3 EhP’ 
corresponds to the ground-state energy of the Hamiltonian with periodic boundary 
conditions. The eigenvalues of HC’  are denoted by E r ’ ( s ) ,  s = 0, 1 ,2 , .  . . . E Y ’ ( 0 )  = 
E r ’  denotes the ground-state energy of the Hamiltonian with free boundary conditions. 

We now consider the following quantities which are relevant for finite-size scaling 
(Cardy 1986a): 

(1.5) Hbd) = H(”) H,‘d) = H(d) H ( F )  = H ( F )  
0 

N 
8C’ (s )  = lim - ( E ~ ’ ( S )  - ELF’). 

N-oc T 

It is a consequence of conformal invariance that the spectra given by equations 
(1.7) can be described by I R  of the Virasoro algebra with a central charge depending 
on the universality class of the system. For the three-state Potts model the central 
charge is c = $ (Friedan et al 1984, Dotsenko 1984). We denote by A the highest weight, 
and by A + r  the level of r having a degeneracy d ( A ,  r )  of one I R  of the Virasoro 
algebra. The spectra %$’(P; s) are given by the products of two IR ( A  and A) of two 
commuting Virasoro algebras with the same central charge. The contribution of one 
I R  ( A ,  A) to the spectrum S&Q’(P; s) is 

%$)(A + r, A + f )  = A + r + + P 

P = ( A  + r ) - (A + P) - f r ,P=0,1 ,2  , . . .  . 
The degeneracy of the level @ ’ ( A +  r, A +  P) is d ( A ,  r ) d ( & ,  P). 

an I R  ( A )  gives a contribution 

(1.8) 

The spectra 8pdF’(s) are described by the I R  of only one Virasoro algebra, namely 

8F’ = A +  r r = O ,  1,2,. . . (1.9) 
with a degeneracy d ( A ,  r ) .  (The degeneracies d(A, r )  can be computed using the 
character formulae of Rocha-Caridi (1985).) 

It was established by numerical studies (von Gehlen and Rittenberg 1986a, b) and 
confirmed by analytical calculations (Cardy 1986b, c, Itzykson and Zuber 1986, Zuber 
1986) that the spectra %do’ and SbF’ can be described by the following sums of I R  of 
the Virasoro algebra: 

s i o ’ ~ o , 0 ~ 0 ~ 3 , 3 ~ 0 ~ 5 , ~ ~ o ~ 3 , 3 ~ 0 ( ~ , 5 ) 0 ( 3 , 0 ~ o ( o ,  3 ) 0 ( 3 , 3 )  

V’ = (A, A)@ ($3 )  

~~”=(~,3)o(f,o)o(~,5)o(f, 3) 

(1.10a) 
% \ I ) =  ( 3 , A ) o ( O , f ) o ( ~ , A ) 0 ( 3 , j )  
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and 

(1.10b) 

With this background in mind we can now formulate the problem we want to clarify 
in this paper. Through the identification provided by equations (1.8) and (1.9), we 
can label the levels for finite chains instead of EdQ'( P ;  s )  by E(A+ r, d +  7; i )  in the 
case of periodic and twisted boundary conditions and analogously for free boundary 
conditions by E(A+ r ;  i )  instead of E F ' ( s ) .  Here i = 1,2 , .  . . , d(A, r ) d ( d ,  i )  for the 
periodic and twisted boundary conditions and i = 1,2, . . . , d(A, r )  for the free boundary 
conditions case. By convention, if the level is not degenerate, we will drop the index 
i. Now we consider the quantities 

9 ( A + r ,  d +  7 ;  i )  = (N/27i)(E(A+ r, A + ? ;  i ) - E b P ' )  

9 ( A +  r ;  i )  = ( N / r ) ( E ( A +  r ;  i )  - EhF') 
(1.11) 

which depend on N as do the E(A + r, A +  7;  i ) ,  EAP', etc. 
Obviously, the 8bo'(P; s), SF'(s) of equation (1.7) are the limits N + a  of the 

corresponding 9. We shall study how for large but finite N the $ ( A +  r, d+  7; i )  
approach A + r + d + P. Assuming power corrections we write 

$(A+ r, A +  7 ;  i )  = A +  r +  A +  7 +  c ,N-" l+  c2N-" '+ .  . . (1.12) 

where a,> a l .  The exponents a 1  and a2 and the coefficients c, and c2 will in general 
depend on the irreducible representation ( A ,  d), of the level ( r ,  ?) and of the index i. 
It was Cardy (1986a, b) who pointed out that conformal invariance can give us much 
information on the a, and c, ( j  = 1,2 , .  . .). We can do a similar study for the 9 
corresponding to the free boundary conditions case: 

(1.13) 

There is, for the time being, no theory which can explain the finite-size corrections 
in the case of free boundary conditions. 

The paper is organised as follows. In § 2 we present the raw numerical data for 
the 9 corresponding to several levels. We then show the results of the fits which give 
the corresponding c and a appearing in equations (1.12) and (1.13). In § 3 we show, 
following Cardy (1986a, b), that the a are related to the scaling dimensions of some 
conformal operators and that the c are related to expansion coefficients (Belavin er a1 
1984). 

In § 4 we compare the numerical results of § 2 with the theoretical predictions of 
8 3. Our results are summarised in § 5 .  In the appendix we derive some expansion 
coefficients from the four-point functions of Dotsenko (1984). These expansion 
coefficients are used in the calculation of the corrections to finite-size scaling. 

9 ( A +  r, i )  = A +  r +  cI N - " )  + c2N-"2+.  . . . 

2. Numerical studies of the corrections to finite-size scaling 

In order to familiarise the reader with the numerical problems involved in our study, 
in tables 1 and 2 we give the values of 9 ( A  + r, d + P; i )  and 9 ( A  + r ;  i )  defined in 
equation (1.11) for several levels. Chains from 2 up to 14 sites have been considered 
for periodic and twisted boundary conditions and from 2 up to 12 sites for free boundary 
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conditions. The large N limit for the 9 computed using Van den Broeck-Schwartz 
(1979) approximants is shown at the bottom of the tables. Comparing the values of 
the estimates with the expected values (see equations (1.12) and (1.13)) one gets a 
feeling of the errors involved. We would like to make a remark on the application of 
the Van den Broeck-Schwartz approximants to our problem. The approximants are 
defined as follows. Assume we have a set of numbers A , ,  A* ,  . . . , A, converging to 
a limit A. We denote by [ n, L ] ,  L = 0, 1, .  . . , new sets defined through the equations 

[ n , - l ] = m  

[ n, 01 = A" 

([n, J5+11-[n, LI)-l 

where p is a parameter. It was pointed out by Hamer and Barber (1981) that if the 
corrections terms to A are power behaved, the approximants are stable for /3 = -1. 
This stability for p = -1 was observed not only for the approximants shown in tables 
1 and 2, but also for the other calculations which are described in this section. 

We now consider the correction terms to the 9 (see equations (1.12) and (1.13)). 
We start with the 9 ( A +  r, A +  f ;  i ) .  We first determine at". In order to do so, we 
consider the estimates 

9 ( A  + r, &+ ?; i ) N  - ( A  + r + & + f )  

A + r ,  & + f ;  i ) N + l  - ( A + r + i + f )  
( a , ) N  ={ln [ (N+l ) /N]} - '  in (2.2) 

where N represents the number of sites. From the estimates ( a l ) N  one obtains a;" 
using Van den Broeck-Schwartz approximants. The results are shown in table 3. In 
order to exemplify how the approximants work, in table 4 we give the approximants 

Table 3. Estimates for c I r  c2, a I  and a2  defined by equation (1.12) (periodic and twisted 
boundary conditions) for several levels. The values of a ,  and a2  assumed in the determina- 
tion of c I  and c2 are also specified. 

( A +  r, A +  P) a;" CI c2 

(0+2,0) 2.01 (2) -5.810 (1 )  - 
( a l  = 2.0) 

(a1=0.8)  

( a l  =0.8) 

(a l=0 .8 )  

( a ,  =0.8) 

( a I  =0.8) 

( a ,  = 1.8) 

( a ,  = 1.6) 

(L I 5 9  L) 15  0.796 (10) 0.006 57 (2) 1.98 (5) 

(&+ I ,  3 1.71 (5) 0.034 (2) 

( 3 ,  3 )  0.7998 (3) 0.2364 (2) 1.80 (2) 

(3.3 0.82 (3) -0.0395 (3) 1.80 (6) 

( 3 , i $ + 1 )  1.79 > -0.2 

-3.417 (4) 

(i, 3) 1.691 (2) -0.708 ( 1 )  

0.032 38 (2) 
( a 2  = 2.1) 

(a2=2) 
-0.328 ( 2 )  

( a 2  = 2)  
-0.15 (3) 

( a 2  = 2) 

-1.6(1) 
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Table 4. Van den Broeck-Schwartz approximants with p = -1 for CY;" corresponding to 
the level (j, 3). 

L 

n O  1 2 3 4 5 
~ 

1 0.210 732 0594 
2 0.431 188 8305 
3 0.535 197 8824 
4 0.595 084 1840 
5 0.633 713 5729 
6 0.660 553 8650 
7 0.680 211 5652 
8 0.695 186 8521 
9 0.706 949 1907 

10 0.716 416 4606 
11 0.724 190 2939 

0.628 096 9357 
0.676 365 8152 0.796 517 6465 
0.703 913 3105 0.798 030 1924 0.799 491 6997 
0.721 661 2838 0.798 767 5181 0.799 733 5156 0.799991 6545 
0.734 011 8063 0.799 183 3625 0.799 843 7650 0.800 048 0630 0.800 024 2323 
0.743 080 7920 0.799 437 5114 0.799 908 2095 0.799 996 0275 
0.750 010 1406 0.799 602 0556 0.799 942 5950 
0.755 469 4091 0.799 712 7415 
0.759 876 5940 

for a;" in the case of S($$). We notice from table 3 that the values of a;" cluster 
into two groups. For the levels (A,&),  ($,$), ($,A) one finds ( ~ ; ~ ~ = 0 . 8  and for the 
others one finds a;ff= 1.8-2.0. Since large values of a;ff can also be obtained from 
a ,  = 0.8 and a2 = 2 with ci and c2 having opposite signs (see equation (1.12)), we have 
assumed a ,  = 0.8 for all the levels and have determined c i .  It turns out that for the 
level ( & + l , & )  we find very stable approximants and less stable approximants for 
($ ,&+l) .  The ansatz ai =0.8 does not work for the levels (0+2,0)  and (3,:). The 
values of the c ,  are shown in table 3. Next we determine aqff. We did it only for the 
levels where a ,  = 0.8. The corresponding values of a;ff are also shown in table 3. They 
are around 1.8-2.0. Next we have assumed a 2 = 2 . 0  and have determined the c2. In 
§ 4 we will discuss the interpretation of the results shown in table 3. 

We now turn to the problem of the corrections to finite-size scaling in the case of 
free boundary conditions. We have determined a;" first (see equation (1.13)). The 
estimates for a;" computed using the equivalent of equation (2.2) are shown in table 
5 .  At the bottom of the table are the Van den Broeck-Schwartz approximants for a;". 
To our surprise they all cluster around ai = 0.8. We have done a fit to the 9 taking 
a ,  = 0.8 and assuming a2 = 2: 

(2.3) 
The values for ci and c2 are shown in table 6. There is not yet a theory which can 
explain the value for ai or the values of the c, in the case of free boundary conditions 
but we shall return to this problem in another publication. 

9 ( A +  r ;  i )  = A +  r +  c , N - ' . ~ +  c 2 W 2 .  

3. Breaking of conformal invariance 

In this section we essentially follow Cardy (1986a, b). We consider first some relations 
which can be obtained using conformal invariance for the two- and three-point 
correlation functions. 

In a conformal invariant theory in two dimensions, each primary field q ( X ,  Y )  is 
related to the highest weights ( A ,  A) of the tensor product of two irreducible representa- 
tions of two commuting Virasoro algebras. The two-point correlation function is 
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m O r - P - m o P P - o h l  
C Q N m d m W W W P - F -  
W I - P - P - P - P - P - P - P - P '  
0 0 0 0 0 0 0 0 0 0  
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Table 6. Estimates for cl and c2 defined by equation (2.3) (free boundary conditions) for 
several levels. 

Level 
( A + r ;  i) cI c2 

(3) -1.943 ( 5 )  -1.2 ( 1 )  
(2) -0.73 (2) -1.3 (1) 

( 3 )  -0.393 (4) -0.13 (4) 
(3+1) -0.81 (2)  -0.9 ( 1 )  
(3+2;  1) -1.49 (4) -1.5 (1) 
(3+3;  1) -1.7 (3 )  -13 (3 )  
(3+3; 2 )  -2.0 ( 2 )  -6 (3) 

completely determined: 

where 

z = X + i Y  Z=X-iY.  

The quantities x = A +  & and s = A - are called the scaling dimensions and the spin 
of the field pa,&. Note that the right-hand side of equation (3.1) fixes the normalisation 
of the field pa,&. The three-point function of primary fields is also fixed by conformal 
invariance: 

( p 4 1 , & , ( ~ 1  3 i l )p42.&~(Z2~ 22)pA3,&3(z3>  53) )  

- c4] , 4 2 , 4 3 ~ & I  , & Z r & 3 ( ~ l  - ~ ~ ) ~ 3 - ~ l - ~  ( -  - f2)'3-'1-' 2(z2- ~ ~ ) ~ 1 - ~ 2 - ~ 3  z1 - 

x ( f * - f 3 ) ~ l - ~ * - ~ 3 ( z 3 - z l ) ~ 2 - 4 3 - A  ' ( -  z3 - f l ) ~ 2 - ~ 3 - L I .  (3.2) 

The c4]  ,42,43 are called expansion coefficients and they are also fixed by the conformal 
theory (Belavin et a1 1984). 

Under a conformal transformation w = w( z )  the correlation function of primary 
fields transforms as follows ( w l  = w ( z l ) ,  etc): 

( p 4 1 , & l ( w l ,  * I ) .  ~ ~ ~ ~ ~ w ' ~ z l ~ ~ ~ ~ ' ~ w ~ ~ z l ~ ~ ~ ~ ' ~ ~ 4 1 , & l ~ z l ~  z l )  * * .). (3.3) 

We now consider the conformal transformation 

w = (N/27r) In z = r i i u  (3.4) 

which maps the plane into the strip ( - t N  S v < t N ,  -CO < T < C O ) .  As the result of the 
transformation (3.4), the two-point function has the following expression on the strip: 

(p4,&(ul 9 Tl)p4.&(u2, T2)) 

= ( 2 7 r / ~ ) 2 x p f & ( 1  - 0 - ~ 4 ( 1  -,y& 
= (27r/N)" f a,(2A)ai(2&) 

r . i = O  

x e x p [ - ( 2 ~ /  N ) ( x  + r +  P)T - (277i/ N ) ( s  + r - P ) v ]  

where 
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and 
r( a + r )  

ar(a)=- 
r !  r y a )  (3.7) 

For the three-point functions of two primary fields qA,& and one spin-zero primary 
field q A , . A ,  (this is the quantity of interest for our calculations) we have 

( ( C A , A ( U l  9 7 1 ) ( P A I . A l ( U 2 ~  7 2 ) q A , & ( u 3 9  73))  

- - C A . A , A ~ C & , ~ , A , ( ~ ~ /  ~ ~ 2 x + x ~ ~ 5 1 5 2 ~ 2 A ~ ~ 1 ~ 2 ~ 2 ~ ~ I ~  - 511 I1 - 521)-'"1 

x (1 - t1 t 2 ) A 1  -y 1 - f l  f 2 ) A l  (3.8) 

51 = exp(2.rr/N)(w, - w2) 52=ex~(257/N)(w2- w d .  (3.9) 

where 

We now write the two-point function (3.5) using the spectral decomposition and 
equations (1.7) and (1.8): 

( q A , & ( u I ,  7 l ) q A , & ( u 2 9  7 2 ) ) = ( O I $ A , & ( ~ l ,  7 1 ) $ A , 8 ( u 2 9  72)10) 

= (0)exp(-Hr1 -i&)$A,z(O, 0) exp(-H7-iPu)(PlA,&(o, 0) 

x e x p ( ~ 7 ~ + i F u ~ ) 1 0 )  
= (OJ$A,,(O, O ) ) A +  r, A +  f ;  i ) (A+ r, A +  F; i l$A,&(O,  0)lO) 

i, r. i 

x e x p [ - ( 2 ~ / N ) ( x  + r + 7 ) ~  - (27ri/ N ) ( s  + r - ?)U] (3.10) 

where H is the Hamiltonian, is the momentum operator and the summation over i 
is over the various degeneracies. We now compare equations (3.5) and (3.10) and obtain 

(3.11) 
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We now assume that the conformal invariant theory described by the Hamiltonian 
H is perturbed by an additional term: 

(3.15) 

where fi is the new Hamiltonian and g is a coupling constant. We apply standard 
perturbation theory and stop at the first order: 

E t P '  = (O(fiJ0) = (O(HI0) = ELP' ( 3 . 1 6 ~ )  

E ( A + r , A + f ;  i )= (A+r ,A+F;  i l f i lA+r,&+?;  i) 

= E , ( A + r , & + f ;  i )+Ng(A+r ,A+? ;  i ( ~ , l , , l ( O , O ) ~ A + r , ~ + F ;  1 ) .  (3.166) 

Here E?' and EJA, A; i) are the eigenvalues of the unperturbed Hamiltonian. From 
equations (3.16a, 6)  and ( l . l l ) ,  we obtain 

$(A+ r, A+ F; i )  = A +  r +  A +  F 

+(N2/27r)g(A+r,&+f;  i ~ ~ a l , a l ( O , O ) ~ A + r , ~ + f ;  i). (3.17) 

If we specialise to the levels considered in equations (3.14u, b), we obtain 

$(A, A)  = A +  A + [g(27r)"l-' N'-"l]cA,a,a, c&,&,a, ( 3 . 1 8 ~ )  

9 ( A  + 1, A )  = A + 1 + A + [g(2~)"1-'N'-"l][ 1 + (A: - A~)/~A]C~,A,A,  c i s i , A l .  (3.18b) 

From equations ( 3 . 1 8 ~ ,  b) we learn that in the first order in [gN2-'1(27r)"l-'] the 
9 can be obtained from the knowledge of the three-point function of the conformal 
theory. Reinicke (1986) has shown that the higher-order corrections can be obtained 
from the n-point correlation functions of the conformal theory (the four-point function 
determines the quadratic correction, etc). 

In equation (3.15) we made the hypothesis that the perturbation is given by the 
primary operator U, T ) .  It is interesting to consider instead the operator &(U, T )  

which corresponds to the descendents r = f =  2 of the unit operator (A ,  = A, = 0). In 
this case one obtains instead of ( 3 . 1 8 ~ )  

9( A, A)  = A + A + g (2 T ) ~  W2[  (A - &cS A,o)(  A - &cS 3.0) - (kc)']. (3.19) 

This result was obtained by Reinicke (1986). Notice that +,,,(U, T )  gives 'analytic' 
contributions to the 9. With the equations (3.18) and (3.19) at hand we can now try 
to give an interpretation to the results obtained in 9 2. 

4. Comparison of the predictions of conformal invariance and the numerical fits 

We have seen in § 2 that the correction terms to the 9 given by equation (1.12) can 
be described by fits of the form 

(4.1) 9 ( A +  r, A +  7) = A +  A + r + F+ A ,  N-'.'+ A , N - , + .  . . 
where the values of the coefficients A ,  and A2 for various levels can be obtained from 
table 3. We first consider the correction term in equation (4.1). From equations 
(3.18) we learn that 

(4.2) A -1 7 
1 -2X1'5 
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and that the leading correction to finite-size scaling is indeed given by the next to 
leading thermal exponent (Privman and Fisher 1983). In order to derive the coefficients 
A,  in equation (4.1), we use equations (3 .18)  to which one has to add the numerical 
values of the expansion coefficients c * , * , ~ / ~ .  From Belavin et a1 (1984) we learn which 
expansion coefficients c ~ , , ~ ~ , ~ ,  are different from zero; they are shown in table 7. From 
this table we obtain 

cQ,Q.7/5= c2/3.2/3.7/5= 0 (4.3) 
and thus the AI for the levels ( 0 + 2 , 0 )  and (3, 3) have to vanish in agreement with 
table 3. In order to obtain the remaining non-vanishing coefficients we use the 
four-point function of Dotsenko (1984) and obtain (see the appendix) 

(4.4) 

and 

( C 2 / 5 , 2 / 5 , 7 / 5 I 2  = ~6(cl/15.1/15,7/5)2~ (4.5a) 

As suggested by the results of table 3, we take the following solution of equation (4.5a): 
(4.5b) 

We can now use equation (4.5b) together with equations (3.18a, b )  and obtain the 
AI  for all levels if we specify one of them (the coupling constant g is unknown). Since 
the errors for the level ($$) are the smallest, we have used the corresponding value 
of A, in order to determine the others. The expected values for the A,  (A;xP) are 
compared in table 8 with the values obtained from table 3. The agreement between 

c2/5,2/5.7/5 = -6cl/ 15.11 15.7 /5*  

Table 7. Values of A3 for which the expansion coefficients = c ~ ? , ~ , . ~ ,  are non-zero. 

Table8. Comparison between the values of A ,  computed using conformal invariance (A;“)  
and those determined numerically. 

Level 
( A + r , 6 + P )  A;”!’ AI 

(0+2,0)  0 0 
(L 15, L) I5 0.006 566 0.006 57 ( 2 )  
(A+ 1 ,  h) 0.034 14 0.034 (2)  
( 4 ,  A) -0.039 4 -0.039 5 (3)  
(3 ,  h+ 1) -0.204 9 > -0.2 
(2 3 . 3 )  2 0 0 
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the two sets of A ,  is very good. We have thus shown that the leading correction to 
the 9 can be understood using the calculations of 0 2. We now proceed with the 
second correction term ( A 2 N - , ) .  This term has to be considered with care. I t  is clear 
that a correction term N - ' . 6  should be present (this is the second-order correction 
coming from the same operator which gave us N-o.8  in first order). We can assume 
that numerically this term is negligible in the interval of N we are considering and 
again try to determine the coefficients A ,  assuming that one of them is known. This 
check can be done using equation (3.19). This analysis can be performed using the 
values of A ,  which can be obtained from table 3. The result is negative. In order to 
illustrate the point, let us consider the ratio of the A, corresponding to the levels ($, 3) 
and (A,&). We find 

from equation (3.19) and 

(4.6a) 

(4.6b) 

from table 3. Many explanations for this mismatch are possible. The most obvious 
of them is that the A , N - ,  terms in our fits are effective representations for combinations 
of the form 

c , N - ' . ~ + c ~ N - ~ + .  , . . (4.7) 

In that case it is hopeless to establish numerically the separate contributions. We 
would like also to mention that in the case of the Ising model the 'analytic' correction 
(W2)  is not given by the operator (P,,~(v, T) used to derive equation (3.19) but by a 
descendent of the energy density operator (Reinicke 1986). It is thus possible that in 
the three-state Potts model there are no ( N - , )  correction terms present at all. 

5. Conclusions 

We have analysed numerically the corrections to finite-size scaling for various levels 
and different boundary conditions. Our results are summarised in tables 3 and 6. In 
the case of periodic and twisted boundary conditions we show that the leading 
correction term is given by N-O.' terms. We find the coefficient of the N-o.8  corrections 
to be in excellent numerical agreement with the short-distance expansion coefficients 
which appear in a first-order perturbation treatment of the breaking of conformal 
invariance. The next to leading correction term is not yet under control. 

In the case of free boundary conditions the leading correction term again behaves 
like N-o.8 .  The theoretical determination of the coefficients in this case will be published 
elsewhere. 
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Appendix. Determination of the expansion coefficients from the 
four-point correlation functions 

where 

zv = z, - ZJ r)  = z13z24/z12z34 

C = S B  D = $ A  
and the F denote standard hypergeometric functions. The normalisation of A, B, C, 
D is chosen to obtain the correct normalisation in equation (3.1 1). 

We perform the conformal transformation (3.4) and use equation (3.3) in order to 
obtain the correlation functions on the strip. Using 

(A31 
we find in the small 5 limit: 

tJ = zJ/ zJ+i = exp{(2.rr/ N )  [( 7, - rJ+i ) + i (  - ~ , + i  )I1 

((P2/5.2/5( U1 9 )p2 /5 .2 /5 (  u2 9 72)(P2/5.2/5(u3 3 73)(P2/5.2/5(v4, 74)) 



Conformal invariance and corrections to scaling 259 1 

It is easy to show, applying the methods of 0 3, that one has in  general: 

x c A , , A ~ , A ~ c A ~ , A ~ . A ~ c ~ ~ . A ~ , A ~ c ~ ~ , A ~ , ~ ~  5 t h  
k 

From equations (A4a, b) and (A5) we obtain 

The expansion coefficients given in equation (A6) are used in 8 4. In a similar way 
we obtain 

(c1/15,1/15.2/5)2 = &(c2/5,2/5,7/5)2 

(c1/15,2/5,2/3)2 =?. (A7) 

The expansion coefficients given in equation (A7) might be useful for other applications. 
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